The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 4
Back to Result List

Long-term dynamical evolution of dusty ejecta from Deimos

  • We re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars' oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 10(4) years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius approximate to 5-10 mum) may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size (approximate to 10- 15 mum) shouldWe re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars' oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 10(4) years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius approximate to 5-10 mum) may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size (approximate to 10- 15 mum) should be the most abundant in the Deimos torus. Our dynamical analysis, combined with a more accurate study of the particle lifetimes, provides corrections to earlier predictions about the dimensions and geometry of the Deimos torus. In addition to a population, appreciably inclined and shifted towards the Sun, the torus should contain a more contracted, less asymmetric, and less tilted component between the orbits of Phobos and Deimos. (C) 2004 Elsevier Ltd. All rights reservedshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Martin MakuchGND, Alexander V. Krivov, Frank SpahnORCiDGND
ISSN:0032-0633
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Planetary and Space Science. - ISSN 0032-0633. - 53 (2005), 4, S. 357 - 369
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.