• search hit 3 of 0
Back to Result List

Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves

  • Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCRLeaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Steffi Parlitz, Reinhard Kunze, Bernd Müller-RöberORCiDGND, Salma BalazadehORCiDGND
DOI:https://doi.org/10.1016/j.jplph.2011.02.001
ISSN:0176-1617
Title of parent work (English):Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants
Publisher:Elsevier
Place of publishing:Jena
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Arabidopsis thaliana; Dark-induced senescence; Expression profiling; Regreening; Transcription factor
Volume:168
Issue:12
Number of pages:9
First page:1311
Last Page:1319
Funding institution:Deutsche Forschungsgemeinschaft [SFB 429, FOR 948, MU 1199/14-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.