The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 49
Back to Result List

Does textural heterogeneity matter? Quantifying transformation of hydrological signals in soils

  • Textural heterogeneity causes complex water flow patterns and soil moisture dynamics in soils that hamper monitoring and modeling soil hydrological processes. These patterns can be generated by process based models considering soil texture heterogeneities. However, there is urgent need for tools for the inverse approach, that is, to analyze observed dynamics in a quantitative way independent from any model approach in order to identify effects of soil texture heterogeneity. Here, studying the transformation of hydrological input signals (e.g., rainfall, snow melt) propagating through the vadose zone is a promising supplement to the common perspective of mass flux considerations. In this study we applied a recently developed new approach for quantitative analysis of hydrological time series (i) to investigate the effect of soil texture on the signal transformation behavior and (ii) to analyze to what degree soil moisture dynamics from a heterogeneous profile can be reproduced by a corresponding homogenous substrate. We used simulationTextural heterogeneity causes complex water flow patterns and soil moisture dynamics in soils that hamper monitoring and modeling soil hydrological processes. These patterns can be generated by process based models considering soil texture heterogeneities. However, there is urgent need for tools for the inverse approach, that is, to analyze observed dynamics in a quantitative way independent from any model approach in order to identify effects of soil texture heterogeneity. Here, studying the transformation of hydrological input signals (e.g., rainfall, snow melt) propagating through the vadose zone is a promising supplement to the common perspective of mass flux considerations. In this study we applied a recently developed new approach for quantitative analysis of hydrological time series (i) to investigate the effect of soil texture on the signal transformation behavior and (ii) to analyze to what degree soil moisture dynamics from a heterogeneous profile can be reproduced by a corresponding homogenous substrate. We used simulation models to generate three data sets of soil moisture time series considering homogeneous substrates (HOM), homogeneous substrates with noise added (NOISE), and heterogeneous substrates (HET). The soil texture classes sand, loamy sand, clay loam and silt were considered. We applied a principal component analysis (also called empirical orthogonal functions) to identify predominant functional patterns and to measure the degree of signal transformation of single time series. For the HOM case 86.7% of the soil moisture dynamics were reproduced by the first two principal components. Based on these results a quantitative measure for the degree of transformation of the input signal was derived. The general nature of signal transformation was nearly identical in all textures, but the intensity of signal damping per depth interval decreased from fine to coarse textures. The same functional patterns occurred in the HET data set. However, here the signal damping of time series did not increase monotonically with soil depth. The analysis succeeded in extracting the same signal transformation behavior from the NOISE data set compared to that of the HOM case in spite of being blurred by random noise. Thus, principal component analysis proved to be a very robust tool to disentangle between independent effects and to measure the degree of transformation of the input signal. The suggested approach can be used for (i) data processing, including subtracting measurement noise (ii) identification of factors controlling soil water dynamics, (iii) assessing the mean signal transformation in heterogeneous soils based on observed soil moisture time series, and (iv) model building, calibration and evaluation. (C) 2015 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Tobias Ludwig HohenbrinkORCiDGND, Gunnar LischeidORCiDGND
DOI:https://doi.org/10.1016/j.jhydrol.2015.02.009
ISSN:0022-1694
ISSN:1879-2707
Title of parent work (English):Journal of hydrology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Functional averaging; Numerical experiment; Principal component analysis; Soil heterogeneity; Soil moisture time series; Transformation of hydrological signals
Volume:523
Number of pages:14
First page:725
Last Page:738
Funding institution:German Research Foundation DFG [Li 802/3-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.