• search hit 1 of 2
Back to Result List

Within-field variation of mycotoxin contamination of winter wheat is related to indicators of soil moisture

  • Humidity is an important determinant of the mycotoxin production (DON, ZEA) by Fusarium species in the grain ears. From a landscape perspective humidity is not evenly distributed across fields. The topographically-controlled redistribution of water within a single field rather leads to spatially heterogeneous soil water content and air humidity. Therefore we hypothesized that the spatial distribution of mycotoxins is related to these topographically-controlled factors. To test this hypothesis we studied the mycotoxin concentrations at contrasting topographic relief positions, i.e. hilltops and depressions characterized by soils of different soil moisture regimes, on ten winter wheat fields in 2006 and 2007. Maize was the preceding crop and minimum tillage was practiced in the fields. The different topographic positions were associated with moderate differences in DON and ZEA concentrations in 2006, but with significant differences in 2007, with six times higher median ZEA and two times higher median DON detected at depression sitesHumidity is an important determinant of the mycotoxin production (DON, ZEA) by Fusarium species in the grain ears. From a landscape perspective humidity is not evenly distributed across fields. The topographically-controlled redistribution of water within a single field rather leads to spatially heterogeneous soil water content and air humidity. Therefore we hypothesized that the spatial distribution of mycotoxins is related to these topographically-controlled factors. To test this hypothesis we studied the mycotoxin concentrations at contrasting topographic relief positions, i.e. hilltops and depressions characterized by soils of different soil moisture regimes, on ten winter wheat fields in 2006 and 2007. Maize was the preceding crop and minimum tillage was practiced in the fields. The different topographic positions were associated with moderate differences in DON and ZEA concentrations in 2006, but with significant differences in 2007, with six times higher median ZEA and two times higher median DON detected at depression sites compared to the hilltops. The depression sites correspond to a higher topographic wetness index as well as redoximorphic properties in soil profiles, which empirically supports our hypothesis at least for years showing wetter conditions in sensitive time windows for Fusarium infections.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marina Elsa Herta Mueller, Sylvia Koszinski, Alexander Brenning, Gernot Verch, Ulrike Korn, Michael SommerORCiDGND
DOI:https://doi.org/10.1007/s11104-010-0695-5
ISSN:0032-079X
ISSN:1573-5036
Title of parent work (English):Plant and soil
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Humidity; Mycotoxins; Soil redoximorphic feature; Topography; Wheat; Within-field variation
Volume:342
Issue:1-2
Number of pages:12
First page:289
Last Page:300
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.