The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 8
Back to Result List

Evolution of the selfing syndrome in Arabis alpina (Brassicaceae)

  • Introduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results andIntroduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results and Discussion Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. Conclusion We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution.show moreshow less

Download full text files

  • pmnr502.pdfeng
    (5061KB)

    SHA-1: 3b8414113a5525e4663d6d3179d5889643869b55

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andrew Tedder, Samuel Carleial, Martyna Gołębiewska, Christian KappelORCiDGND, Kentaro K. Shimizu, Marc StiftORCiD
URN:urn:nbn:de:kobv:517-opus4-408401
DOI:https://doi.org/10.25932/publishup-40840
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (502)
Publication type:Postprint
Language:English
Date of first publication:2019/01/17
Publication year:2015
Publishing institution:Universität Potsdam
Release date:2019/01/17
Tag:daffodil Narcissus longispathus; floral traits; flower size; inbreeding depression; incompatibility locus; mating-system variation; pollen-ovule ratios; population-structure; quantitative trait loci
Leavenworthia alabamica
Issue:502
Number of pages:17
Source:PLOS ONE 10 (2015) 6, Art. e0126618 DOI: 10.1371/journal.pone.0126618
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Publishing method:Open Access
Grantor:Public Library of Science (PLOS)
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.