The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 22 of 37
Back to Result List

Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana

  • The poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. WhenThe poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christian KappelORCiDGND, Gerda Trost, Hjördis CzesnickORCiDGND, Anna Ramming, Benjamin Kolbe, Son Lang Vi, Claudia Bispo, Jörg D. Becker, Cornelia de Moor, Michael LenhardORCiDGND
DOI:https://doi.org/10.1371/journal.pgen.1005474
ISSN:1553-7390
ISSN:1553-7404
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26305463
Title of parent work (English):PLoS Genetics : a peer-reviewed, open-access journal
Publisher:PLoS
Place of publishing:San Fransisco
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:11
Issue:8
Number of pages:30
Funding institution:Deutsche Forschungsgemeinschaft [Le1412/3-1, Le1412/3-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.