The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 4
Back to Result List

Efficiency-limiting processes in low-bandgap polymer:Perylene diimide photovoltaic blends

  • The charge generation and recombination processes following photo-excitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump-probe spectroscopy covering a dynamic range from femto-to microseconds to get insight into the efficiency-limiting photophysical processes. The several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene photoinduced electron transfer from the polymer to the perylene acceptor takes up to blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. ThisThe charge generation and recombination processes following photo-excitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump-probe spectroscopy covering a dynamic range from femto-to microseconds to get insight into the efficiency-limiting photophysical processes. The several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene photoinduced electron transfer from the polymer to the perylene acceptor takes up to blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. This reduces the short-circuit current even further, leading to a scenario in which only around 2596 of the initial photoexcitations generate free charges that can potentially contribute to the photocurrent. In summary, the key photophysical limitations of perylene diimide as an acceptor in low-bandgap polymer blends appear at the interface between the materials, with the kinetics of both charge generation and separation inhibited as compared to that of fullerenes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Dominik W. Gehrig, Steffen RolandORCiDGND, Ian A. Howard, Valentin Kamm, Hannah Mangold, Dieter NeherORCiDGND, Frederic LaquaiORCiD
DOI:https://doi.org/10.1021/jp503366m
ISSN:1932-7447
Title of parent work (English):The journal of physical chemistry : C, Nanomaterials and interfaces
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:118
Issue:35
Number of pages:9
First page:20077
Last Page:20085
Funding institution:Max Planck Society; Deutsche Forschungsgemeinschaft (DFG) [SPP1355]; Fonds der Chemischen Industrie (FCI); Alexander von Humboldt Foundation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.