• search hit 2 of 3
Back to Result List

Revisiting the Crystallization of Poly(2-alkyl-2-oxazoline)s

  • Poly(2-alkyl-2-oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (T-g) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt-recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 degrees C and PiPropOx between 90 and 150 degrees C show that PAOx can crystallizePoly(2-alkyl-2-oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (T-g) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt-recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 degrees C and PiPropOx between 90 and 150 degrees C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > T-g with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. (C) 2015 Wiley Periodicals, Inc.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:A. Levent Demirel, Pinar Tatar Guner, Bart Verbraeken, Helmut SchlaadORCiDGND, Ulrich S. Schubert, Richard Hoogenboom
DOI:https://doi.org/10.1002/polb.23967
ISSN:0887-6266
ISSN:1099-0488
Title of parent work (English):Journal of polymer science : B, Polymer physics
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:chain mobility; crystallization; differential scanning calorimetry (DSC); effect of alkyl side chains; glass transition temperature; melt; melt-recrystallization; polymer crystallization
Volume:54
Number of pages:9
First page:721
Last Page:729
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.