• search hit 1 of 3
Back to Result List

Six-color time-resolved forster resonance energy transfer for ultrasensitive multiplexed biosensing

  • Simultaneous monitoring of multiple molecular interactions and multiplexed detection of several diagnostic biomarkers at very low concentrations have become important issues in advanced biological and chemical sensing. Here we present an optically multiplexed six-color Forster resonance energy transfer (FRET) biosensor for simultaneous monitoring of five different individual binding events. We combined simultaneous FRET from one Tb complex to five different organic dyes measured in a filter-based time-resolved detection format with a sophisticated spectral crosstalk correction, which results in very efficient background suppression. The advantages and robustness of the multiplexed FRET sensor were exemplified by analyzing a 15-component lung cancer immunoassay involving 10 different antibodies and five different tumor markers in a single 50 mu L human serum sample. The multiplexed biosensor offers clinically relevant detection limits in the low picomolar (ng/mL) concentration range for all five markers, thus providing an effectiveSimultaneous monitoring of multiple molecular interactions and multiplexed detection of several diagnostic biomarkers at very low concentrations have become important issues in advanced biological and chemical sensing. Here we present an optically multiplexed six-color Forster resonance energy transfer (FRET) biosensor for simultaneous monitoring of five different individual binding events. We combined simultaneous FRET from one Tb complex to five different organic dyes measured in a filter-based time-resolved detection format with a sophisticated spectral crosstalk correction, which results in very efficient background suppression. The advantages and robustness of the multiplexed FRET sensor were exemplified by analyzing a 15-component lung cancer immunoassay involving 10 different antibodies and five different tumor markers in a single 50 mu L human serum sample. The multiplexed biosensor offers clinically relevant detection limits in the low picomolar (ng/mL) concentration range for all five markers, thus providing an effective early screening tool for lung cancer with the possibility of distinguishing small-cell from non-small-cell lung carcinoma. This novel technology will open new doors for multiple biomarker diagnostics as well as multiplexed real-time imaging and spectroscopy.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Daniel Geissler, Stefan Stufler, Hans-Gerd LöhmannsröbenGND, Niko Hildebrandt
DOI:https://doi.org/10.1021/ja310317n
ISSN:0002-7863 (print)
Parent Title (English):Journal of the American Chemical Society
Publisher:American Chemical Society
Place of publication:Washington
Document Type:Article
Language:English
Year of first Publication:2013
Year of Completion:2013
Release Date:2017/03/26
Volume:135
Issue:3
Pagenumber:8
First Page:1102
Last Page:1109
Funder:European Commission
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert