The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 19
Back to Result List

Aggravation by prostaglandin e-2 of interleukin-6-dependent insulin resistance in hepatocytes

  • Hepatic insulin resistance is a major contributor to fasting hyperglycemia in patients with metabolic syndrome and type 2 diabetes. Circumstantial evidence suggests that cyclooxygenase products in addition to cytokines might contribute to insulin resistance. However, direct evidence for a role of prostaglandins in the development of hepatic insulin resistance is lacking. Therefore, the impact of prostaglandin E-2 (PGE(2)) alone and in combination with interleukin-6 (IL-6) on insulin signaling was studied in primary hepatocyte cultures. Rat hepatocytes were incubated with IL-6 and/or PGE(2) and subsequently with insulin. Glycogen synthesis was monitored by radiochemical analysis; the activation state of proteins of the insulin receptor signal chain was analyzed by western blot with phosphospecific antibodies. In hepatocytes, insulin-stimulated glycogen synthesis and insulin-dependent phosphorylation of Akt-kinase were attenuated synergistically by prior incubation with IL-6 and/or PGE(2) while insulin receptor autophosphorylation wasHepatic insulin resistance is a major contributor to fasting hyperglycemia in patients with metabolic syndrome and type 2 diabetes. Circumstantial evidence suggests that cyclooxygenase products in addition to cytokines might contribute to insulin resistance. However, direct evidence for a role of prostaglandins in the development of hepatic insulin resistance is lacking. Therefore, the impact of prostaglandin E-2 (PGE(2)) alone and in combination with interleukin-6 (IL-6) on insulin signaling was studied in primary hepatocyte cultures. Rat hepatocytes were incubated with IL-6 and/or PGE(2) and subsequently with insulin. Glycogen synthesis was monitored by radiochemical analysis; the activation state of proteins of the insulin receptor signal chain was analyzed by western blot with phosphospecific antibodies. In hepatocytes, insulin-stimulated glycogen synthesis and insulin-dependent phosphorylation of Akt-kinase were attenuated synergistically by prior incubation with IL-6 and/or PGE(2) while insulin receptor autophosphorylation was barely affected. IL-6 but not PGE(2) induced suppressors of cytokine signaling (SOCS3). PGE(2) but not IL-6 activated extracellular signal-regulated kinase 1/2 (ERK1/2) persistently. Inhibition of ERK1/2 activation by PD98059 abolished the PGE(2)-dependent but not the IL-6-dependent attenuation of insulin signaling. In HepG2 cells expressing a recombinant EP3-receptor, PGE(2) pre-incubation activated ERK1/2, caused a serine phosphorylation of insulin receptor substrate 1 (IRS1), and reduced the insulin-dependent Akt-phosphorylation. Conclusion: PGE(2) might contribute to hepatic insulin resistance via an EP3-receptor-dependent ERK1/2 activation resulting in a serine phosphorylation of insulin receptor substrate, thereby preventing an insulin-dependent activation of Akt and glycogen synthesis. Since different molecular mechanisms appear to be employed, PGE(2) may synergize with IL-6, which interrupted the insulin receptor signal chain, principally by an induction of SOCS, namely SOCS3.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Janin HenkelORCiDGND, Frank Neuschaefer-Rube, Andrea Pathe-Neuschaefer-Rube, Gerhard Paul PüschelORCiDGND
URL:http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291527-3350
DOI:https://doi.org/10.1002/Hep.23064
ISSN:0270-9139
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Hepatology. - ISSN 0270-9139. - 50 (2009), 3, S. 781 - 790
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.