The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 153
Back to Result List

Spectrum formation in clumpy stellar winds

  • Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies (”microclumping”). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps (“macroclumping”). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on theirModeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies (”microclumping”). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps (“macroclumping”). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Wolf-Rainer HamannORCiDGND, Lida OskinovaORCiDGND, Achim FeldmeierORCiDGND
URN:urn:nbn:de:kobv:517-opus-17838
Publication type:Conference Proceeding
Language:English
Publication year:2007
Publishing institution:Universität Potsdam
Release date:2008/04/25
RVK - Regensburg classification:US 1999.07
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Collection(s):Universität Potsdam / Tagungsbände/Proceedings (nicht fortlaufend) / Clumping in hot-star winds: International Workshop, Potsdam, Germany, 18. - 22. June 2007
Universität Potsdam / Tagungsbände/Proceedings (nicht fortlaufend) / Clumping in hot-star winds: International Workshop, Potsdam, Germany, 18. - 22. June 2007 / Talks and Discussions (in alphabetical order)
Universität Potsdam / Tagungsbände/Proceedings (nicht fortlaufend) / Clumping in hot-star winds: International Workshop, Potsdam, Germany, 18. - 22. June 2007 / Talks and Discussions (organized by sections) / Spectral modeling
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
External remark:
The complete edition of the proceedings "Clumping in hot-star winds" is available:
urn:nbn:de:kobv:517-opus-13981
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.