• search hit 2 of 2
Back to Result List

Differential impact of zinc deficiency on phagocytosis, oxidative burst, and production of pro-inflammatory cytokines by human monocytes

  • Zinc deficiency has a fundamental influence on the immune defense, with multiple effects on different immune cells, resulting in a major impairment of human health. Monocytes and macrophages are among the immune cells that are most fundamentally affected by zinc, but the impact of zinc on these cells is still far from being completely understood. Therefore, this study investigates the influence of zinc deficiency on monocytes of healthy human donors. Peripheral blood mononuclear cells, which include monocytes, were cultured under zinc deficient conditions for 3 days. This was achieved by two different methods: by application of the membrane permeable chelator N,N,N0´,N0´-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) or by removal of zinc from the culture medium using a CHELEX 100 resin. Subsequently, monocyte functions were analyzed in response to Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae. Zinc depletion had differential effects. On the one hand, elimination of bacterial pathogens by phagocytosis andZinc deficiency has a fundamental influence on the immune defense, with multiple effects on different immune cells, resulting in a major impairment of human health. Monocytes and macrophages are among the immune cells that are most fundamentally affected by zinc, but the impact of zinc on these cells is still far from being completely understood. Therefore, this study investigates the influence of zinc deficiency on monocytes of healthy human donors. Peripheral blood mononuclear cells, which include monocytes, were cultured under zinc deficient conditions for 3 days. This was achieved by two different methods: by application of the membrane permeable chelator N,N,N0´,N0´-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) or by removal of zinc from the culture medium using a CHELEX 100 resin. Subsequently, monocyte functions were analyzed in response to Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae. Zinc depletion had differential effects. On the one hand, elimination of bacterial pathogens by phagocytosis and oxidative burst was elevated. On the other hand, the production of the inflammatory cytokines tumor necrosis factor (TNF)-a and interleukin (IL)-6 was reduced. This suggests that monocytes shift from intercellular communication to basic innate defensive functions in response to zinc deficiency. These results were obtained regardless of the method by which zinc deficiency was achieved. However, CHELEX-treated medium strongly augmented cytokine production, independently from its capability for zinc removal. This side-effect severely limits the use of CHELEX for investigating the effects of zinc deficiency on innate immunity.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Lena S. Mayer, Peter Uciechowski, Sören Meyer, Tanja Schwerdtle, Lothar Rink, Hajo Haase
URN:urn:nbn:de:kobv:517-opus4-99405
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (281)
Document Type:Postprint
Language:English
Date of first Publication:2014/05/02
Year of Completion:2014
Publishing Institution:Universität Potsdam
Release Date:2016/11/17
Source:Metallomics (2014) Nr. 6, S. 1288-1295. - DOI: 10.1039/c4mt00051j
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Publication Way:Open Access
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht