The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 171
Back to Result List

Novosphingobium fuchskuhlense sp nov., isolated from the north-east basin of Lake Grosse Fuchskuhle

  • A yellow pigmented, Gram-negative, rod-shaped bacterium designated FNE08-7(T) was isolated from subsurface water of the north-east basin of the bog lake Grosse Fuchskuhle (Brandenburg, Germany). A first analysis of the nearly full-length 16S rRNA gene sequence analysis including environmental 16S rRNA gene sequences derived from freshwater ecosystems showed that strain FNE08-7(T) is the first cultured representative, to our knowledge, of the freshwater tribe Novo-A2. Further analysis indicates highest 16S rRNA gene sequence similarities to the type strains of Novosphingobium stygium (98.0%) and Novosphingobium taihuense (97.4%) and between 94.0% and 96.9% sequence similarity to other members of the genus Novosphingobium. Reconstruction of phylogenetic trees showed that strain FNE08-7(T) formed a distinct cluster with the type strains of N. stygium and N. taihuense supported by high bootstrap values. DNA DNA hybridization of strain FNE08-7(T) with N. stygium SMCC B0712(T) and N. taihuense DSM 17507(T) revealed low similarity values ofA yellow pigmented, Gram-negative, rod-shaped bacterium designated FNE08-7(T) was isolated from subsurface water of the north-east basin of the bog lake Grosse Fuchskuhle (Brandenburg, Germany). A first analysis of the nearly full-length 16S rRNA gene sequence analysis including environmental 16S rRNA gene sequences derived from freshwater ecosystems showed that strain FNE08-7(T) is the first cultured representative, to our knowledge, of the freshwater tribe Novo-A2. Further analysis indicates highest 16S rRNA gene sequence similarities to the type strains of Novosphingobium stygium (98.0%) and Novosphingobium taihuense (97.4%) and between 94.0% and 96.9% sequence similarity to other members of the genus Novosphingobium. Reconstruction of phylogenetic trees showed that strain FNE08-7(T) formed a distinct cluster with the type strains of N. stygium and N. taihuense supported by high bootstrap values. DNA DNA hybridization of strain FNE08-7(T) with N. stygium SMCC B0712(T) and N. taihuense DSM 17507(T) revealed low similarity values of 18.4% (reciprocal: 11.4%) and 23.1% (reciprocal: 54.2%), respectively. The predominant fatty acid of the isolate is C-18:1 omega 7c (56.4%) and two characteristic 2-hydroxy fatty acids, C-14:0 2-OH (16.5%) and C-15:0 2-OH (3.3%) occur. Ubiquinone Q-10 is the major respiratory quinone. The predominant polar lipids are phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine and minor amounts of diphosphatidylglycerol. Spermidine is the predominant polyamine. Characterization by genotypic, chemotaxonomic and phenotypic analysis indicate that strain FNE08-7(T) represents a novel species of the genus Novosphingobium within the Alphaproteobacteria. Therefore, we propose the species Novosphingobium fuchskuhlense sp. nov., with FNE08-7(T) (=DSM 25065(T)=CCM 7978(T)=CCUG 61508(T)) as the type strain.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stefanie P. Gläser, Kathrin Bolte, Karin Martin, Hans-Jürgen Busse, Hans-Peter GrossartORCiDGND, Peter Kämpfer, Jens Gläser
DOI:https://doi.org/10.1099/ijs.0.043083-0
ISSN:1466-5026
Title of parent work (English):International journal of systematic and evolutionary microbiology
Publisher:Society for General Microbiology
Place of publishing:Reading
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:63
Number of pages:7
First page:586
Last Page:592
Funding institution:German Science Foundation (DFG) [JG-620/2-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.