The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 121
Back to Result List

A seasonal alternation of coherent and compensatory dynamics occurs in phytoplankton

  • Functional groups with diverse responses to environmental factors sum to produce communities with less temporal variability in their biomass than those lacking this diversity. The detection of these compensatory dynamics can be complicated by a spatio-temporal alternation in the environmental factors limiting growth (both abiotic and biotic), which restricts the occurrence of compensatory dynamics to certain periods or locations. Hence, resolving the spatio- temporal scale may uncover important spatial and/or temporal components in community variability. Using long-term data from Lake Constance (Bodensee), we find that a reduction in grazing pressure and relaxed competition for nutrients during winter and spring generates coherent dynamics among edible and less edible phytoplankton. During summer and fall, when both grazing pressure and nutrient limitation are present, edible and less edible phytoplankton exhibit compensatory dynamics. This study supports recent work suggesting that both abiotic and biotic interactions promoteFunctional groups with diverse responses to environmental factors sum to produce communities with less temporal variability in their biomass than those lacking this diversity. The detection of these compensatory dynamics can be complicated by a spatio-temporal alternation in the environmental factors limiting growth (both abiotic and biotic), which restricts the occurrence of compensatory dynamics to certain periods or locations. Hence, resolving the spatio- temporal scale may uncover important spatial and/or temporal components in community variability. Using long-term data from Lake Constance (Bodensee), we find that a reduction in grazing pressure and relaxed competition for nutrients during winter and spring generates coherent dynamics among edible and less edible phytoplankton. During summer and fall, when both grazing pressure and nutrient limitation are present, edible and less edible phytoplankton exhibit compensatory dynamics. This study supports recent work suggesting that both abiotic and biotic interactions promote compensatory dynamics and to our knowledge, this is the first example of a system where compensatory and coherent dynamics seasonally alternate.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:David Vasseur, Ursula GaedkeORCiDGND, Kevin S. McCann
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Oikos. - 110 (2005), 3, S. 507 - 514
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.