The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 4
Back to Result List

How many tracers do we need for end member mixing analysis (EMMA)? - a sensitivity analysis

  • End member mixing analysis (EMMA) is a commonly applied method to identify and quantify the dominant runoff producing sources of water. It employs tracers to determine the dimensionality of the hydrologic system. Many EMMA studies have been conducted using two to six tracers, with some of the main tracers being Ca, Na, Cl(-), water isotopes, and alkalinity. Few studies use larger tracer sets including minor trace elements such as Li, Rb, Sr, and Ba. None of the studies has addressed the question of the tracer set size and composition, despite the fact that these determine which and how many end members (EM) will be identified. We examine how tracer set size and composition affects the conceptual model that results from an EMMA. We developed an automatic procedure that conducts EMMA while iteratively changing tracer set size and composition. We used a set of 14 tracers and 9 EMs. The validity of the resulting conceptual models was investigated under the aspects of dimensionality, EM combinations, and contributions to stream water. FromEnd member mixing analysis (EMMA) is a commonly applied method to identify and quantify the dominant runoff producing sources of water. It employs tracers to determine the dimensionality of the hydrologic system. Many EMMA studies have been conducted using two to six tracers, with some of the main tracers being Ca, Na, Cl(-), water isotopes, and alkalinity. Few studies use larger tracer sets including minor trace elements such as Li, Rb, Sr, and Ba. None of the studies has addressed the question of the tracer set size and composition, despite the fact that these determine which and how many end members (EM) will be identified. We examine how tracer set size and composition affects the conceptual model that results from an EMMA. We developed an automatic procedure that conducts EMMA while iteratively changing tracer set size and composition. We used a set of 14 tracers and 9 EMs. The validity of the resulting conceptual models was investigated under the aspects of dimensionality, EM combinations, and contributions to stream water. From the 16,369 possibilities, 23 delivered plausible results. The resulting conceptual models are highly sensitive to the tracer set size and composition. The moderate reproducibility of EM contributions indicates a still missing EM. It also emphasizes that the major elements are not always the most useful tracers and that larger tracer sets have an enhanced capacity to avoid false conclusions about catchment functioning. The presented approach produces results that may not be apparent from the traditional approach and it is a first step to add the idea of statistical significance to the EMMA approach.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Frauke Katrin BartholdORCiDGND, Christoph Tyralla, Katrin Schneider, Kellie B. Vache, Hans-Georg Frede, Lutz Breuer
DOI:https://doi.org/10.1029/2011WR010604
ISSN:0043-1397
Title of parent work (English):Water resources research
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Volume:47
Issue:7360
Number of pages:14
Funding institution:German Science Foundation (DFG) [FG 536]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.