The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 5
Back to Result List

The Photoinduced E -> Z Isomerization of Bisazobenzenes: A Surface Hopping Molecular Dynamics Study

  • The photoinduced E -> Z isomerization of azobenzene is a prototypical example of molecular switching. On the way toward rigid molecular rods such as those for opto-mechanical applications, multiazobenzene structures have been suggested in which several switching units are linked together within the same molecule (Bleger et al., J. Phys. Chem. B 2011, 115, 9930-9940). Large differences in the switching efficiency of multiazobenzenes have been observed, depending on whether the switching units are electronically decoupled or not. In this paper we study, on a time-resolved molecular level, the E -> Z isomerization of the simplest multiazobenzene, bisazobenzene (BAB). Two isomers (ortho- and para-BAB), differing only in the connectivity of two azo groups on a shared phenyl ring will be considered.To do so, nonadiabatic semiclassical dynamics after photo-excitation of the isomers are studied by employing an "on-the-fly", fewest switches surface hopping approach. States and couplings are calculated by Configuration Interaction (CI) based onThe photoinduced E -> Z isomerization of azobenzene is a prototypical example of molecular switching. On the way toward rigid molecular rods such as those for opto-mechanical applications, multiazobenzene structures have been suggested in which several switching units are linked together within the same molecule (Bleger et al., J. Phys. Chem. B 2011, 115, 9930-9940). Large differences in the switching efficiency of multiazobenzenes have been observed, depending on whether the switching units are electronically decoupled or not. In this paper we study, on a time-resolved molecular level, the E -> Z isomerization of the simplest multiazobenzene, bisazobenzene (BAB). Two isomers (ortho- and para-BAB), differing only in the connectivity of two azo groups on a shared phenyl ring will be considered.To do so, nonadiabatic semiclassical dynamics after photo-excitation of the isomers are studied by employing an "on-the-fly", fewest switches surface hopping approach. States and couplings are calculated by Configuration Interaction (CI) based on a semiempirical (AM1) Hamiltonian (Persico and co-workers, Chem. Eur. J. 2004, 10, 2327-2341). In the case of para-BAB, computed quantum yields for photoswitching are drastically reduced compared to pristine azobenzene, due to electronic coupling of both switching units. A reason for this (apart from altered absorption spectra and reduced photochromicity) is the drastically reduced lifetimes of electronically excited states which are transiently populated. In contrast for meta-connected species, electronic subsystems are largely decoupled, and computed quantum yields are slightly higher than that for pristine azobenzene because of new isomerization channels. In this case we can also distinguish between single- and double-switch events and we find a cooperative effect: The isomerization of a single azo group is facilitated if the other azo group is already in the Z-configuration.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gereon Floss, Peter SaalfrankORCiDGND
DOI:https://doi.org/10.1021/acs.jpca.5b02933
ISSN:1089-5639
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25928321
Title of parent work (English):The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:119
Issue:20
Number of pages:12
First page:5026
Last Page:5037
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [SFB 658]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.