The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 27
Back to Result List

Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays

  • A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved Forster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surfacefunctionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, bothA new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved Forster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surfacefunctionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with Forster theory, Forsterradii (R0) were found to be around 60 angstrom for organic dyes and around 105 angstrom for QDs. The FRET efficiency (Z) reached 80% and 25% for dye and QD acceptors, respectively. Physical donor-acceptor distances (r) have been determined in the range 45-60 angstrom for organic dye acceptors, while for acceptor QDs between 120 angstrom and 145 angstrom. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Piotr J. Cywinski, Katia Nchimi Nono, Loic J. Charbonniere, Tommy Hammann, Hans-Gerd LöhmannsröbenORCiDGND
DOI:https://doi.org/10.1039/c3cp54883j
ISSN:1463-9076
ISSN:1463-9084
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/24556813
Title of parent work (English):Physical chemistry, chemical physics : a journal of European Chemical Societies
Publisher:Royal Society of Chemistry
Place of publishing:Cambridge
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:16
Issue:13
Number of pages:8
First page:6060
Last Page:6067
Funding institution:Marie Curie European Reintegration Grant QUANTUM<INF>DOT</INF>IMPRINT [PERG05-GA2009-247825]; FP7 Collaborative Project NANOGNOS-TICS [HEALTH-F5-2009-242264]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.