• search hit 1 of 1
Back to Result List

Nanoparticles at solid interfaces

  • Nanoparticles (NPs) are particles between 1 and 100 nanometers in size. They have attracted enormous research interests owing to their remarkable physicochemical properties and potential applications in the optics, catalysis, sensing, electronics, or optical devices. The thesis investigates systems of NPs attached to planar substrates. In the first part of the results section of the thesis a new method is presented to immobilize NPs. In many NP applications a strong, persistent adhesion to substrates is a key requirement. Up to now this has been achieved with various methods, which are not always the optimum regarding adhesion strength or applicability. We propose a new method which uses capillarity to enhance the binding agents in the contact area between NP and substrate. The adhesion strength resulting from the new approach is investigated in detail and it is shown that the new approach is superior to older methods in several ways. The following section presents the optical visualization of nano-sized objects through aNanoparticles (NPs) are particles between 1 and 100 nanometers in size. They have attracted enormous research interests owing to their remarkable physicochemical properties and potential applications in the optics, catalysis, sensing, electronics, or optical devices. The thesis investigates systems of NPs attached to planar substrates. In the first part of the results section of the thesis a new method is presented to immobilize NPs. In many NP applications a strong, persistent adhesion to substrates is a key requirement. Up to now this has been achieved with various methods, which are not always the optimum regarding adhesion strength or applicability. We propose a new method which uses capillarity to enhance the binding agents in the contact area between NP and substrate. The adhesion strength resulting from the new approach is investigated in detail and it is shown that the new approach is superior to older methods in several ways. The following section presents the optical visualization of nano-sized objects through a combination of thin film surface distortion and interference enhanced optical reflection microscopy. It is a new, fast and non-destructive technique. It not only reveals the location of NPs as small as 20nm attached to planar surfaces and embedded in a molecularly thin liquid film. It also allows the measurement of the geometry of the surface distortion of the liquid film. Even for small NPs the meniscus reaches out for micrometers, which is the reason why the NPs produce such a pronounced optical footprint. The nucleation and growth of individual bubbles is presented in chapter 5. Nucleation is a ubiquitous natural phenomenon and of great importance in numerous industrial processes. Typically it occurs on very small scales (nanometers) and it is of a random nature (thermodynamics of small systems). Up to now most experimental nucleation studies deal with a large number of individual nucleation processes to cope with its inherently statistical, spatio-temporal character. In contrast, in this thesis the individual O2-bubble formation from single localized platinum NP active site is studied experimentally. The bubble formation is initiated by the catalytic reaction of H2O2 on the Pt surface. It is studied how the bubble nucleation and growth depends on the NP size, the H2O2 concentration and the substrate surface properties. It is observed that in some cases the bubbles move laterally over the substrate surface, driven by the O2-production and the film ablation.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Guoxiang ChenORCiDGND
Advisor:Hans Riegler
Document Type:Doctoral Thesis
Language:English
Year of first Publication:2018
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/05/16
Release Date:2018/05/29
Tag:Nanoparticles, Adhesion, Interfaces, Bubble, Imaging
Pagenumber:112
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International