The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 29
Back to Result List

Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling

  • In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0–5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MTIn order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0–5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sanjay S. Negi, Ajay Paul, Simone CescaORCiD, Kamal, Marius KriegerowskiGND, P. Mahesh, Sandeep GuptaORCiD
DOI:https://doi.org/10.1016/j.tecto.2017.05.007
ISSN:0040-1951
ISSN:1879-3266
Title of parent work (English):Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:Critical taper wedge; Lesser Himalayan Duplex; Out-of-sequence thrust
Volume:712
Number of pages:19
First page:45
Last Page:63
Funding institution:GFZ German Research Centre for Geosciences Potsdam; Federal Foreign Office of Germany; Ministry of Earth Science, New Delhi
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.