• search hit 2 of 0
Back to Result List

What can we learn from melt inclusions in migmatites and granulites?

  • With less than two decades of activity, research on melt inclusions (MI) in crystals from rocks that have undergone crustal anatexis - migmatites and granulites - is a recent addition to crustal petrology and geochemistry. Studies on this subject started with glassy inclusions in anatectic crustal enclaves in lavas, and then progressed to regionally metamorphosed and partially melted crustal rocks, where melt inclusions are normally crystallized into a cryptocrystalline aggregate (nanogranitoid). Since the first paper on melt inclusions in the granulites of the Kerala Khondalite Belt in 2009, reported and studied occurrences are already a few tens. Melt inclusions in migmatites and granulites show many analogies with their more common and long studied counterparts in igneous rocks, but also display very important differences and peculiarities, which are the subject of this review. Microstructurally, melt inclusions in anatectic rocks are small, commonly 10 mu m in diameter, and their main mineral host is peritectic garnet, althoughWith less than two decades of activity, research on melt inclusions (MI) in crystals from rocks that have undergone crustal anatexis - migmatites and granulites - is a recent addition to crustal petrology and geochemistry. Studies on this subject started with glassy inclusions in anatectic crustal enclaves in lavas, and then progressed to regionally metamorphosed and partially melted crustal rocks, where melt inclusions are normally crystallized into a cryptocrystalline aggregate (nanogranitoid). Since the first paper on melt inclusions in the granulites of the Kerala Khondalite Belt in 2009, reported and studied occurrences are already a few tens. Melt inclusions in migmatites and granulites show many analogies with their more common and long studied counterparts in igneous rocks, but also display very important differences and peculiarities, which are the subject of this review. Microstructurally, melt inclusions in anatectic rocks are small, commonly 10 mu m in diameter, and their main mineral host is peritectic garnet, although several other hosts have been observed. Inclusion contents vary from glass in enclaves that were cooled very rapidly from supersolidus temperatures, to completely crystallized material in slowly cooled regional migmatites. The chemical composition of the inclusions can be analyzed combining several techniques (SEM, EMP, NanoSIMS, LA-ICP-MS), but in the case of crystallized inclusions the experimental remelting under confining pressure in a piston cylinder is a prerequisite. The melt is generally granitic and peraluminous, although granodioritic to trondhjemitic compositions have also been found. Being mostly primary in origin, inclusions attest for the growth of their peritectic host in the presence of melt. As a consequence, the inclusions have the unique ability of preserving information on the composition of primary anatectic crustal melts, before they undergo any of the common following changes in their way to produce crustal magmas. For these peculiar features, melt inclusions in migmatites and granulites, largely overlooked so far, have the potential to become a fundamental tool for the study of crustal melting, crustal differentiation, and even the generation of the continental crust. (C) 2015 The Authors. Published by Elsevier B.V.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bernardo Cesare, Antonio Acosta-Vigil, Omar Bartoli, Silvio FerreroORCiDGND
DOI:https://doi.org/10.1016/j.lithos.2015.09.028
ISSN:0024-4937
ISSN:1872-6143
Title of parent work (English):Lithos : an international journal of mineralogy, petrology, and geochemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Review
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Crustal melting; Granites; Granulites; Melt inclusions; Migmatites; Nanogranitoids
Volume:239
Number of pages:31
First page:186
Last Page:216
Funding institution:Italian Ministry of Education, University, Research [PRIN 2010TT22SC, SIR RBSI14Y7PF]; Padova University (Piscopia - Marie Curie Fellowship) [GA 600376, CPDA107188/10]; Ministerio de Ciencia e Innovacion of Spain [CGL2007-62992]; Alexander von Humboldt Foundation; Deutsche Forschungsgemeinschaft [FE 1527/2-1]; European Commission [600376]; German Federal Ministry for Education and Research
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.