The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 44
Back to Result List

A Computational Evaluation of Sentence Processing Deficits in Aphasia

  • Individuals with agrammatic Broca's aphasia experience difficulty when processing reversible non-canonical sentences. Different accounts have been proposed to explain this phenomenon. The Trace Deletion account (Grodzinsky, 1995, 2000, 2006) attributes this deficit to an impairment in syntactic representations, whereas others (e.g., Caplan, Waters, Dede, Michaud, & Reddy, 2007; Haarmann, Just, & Carpenter, 1997) propose that the underlying structural representations are unimpaired, but sentence comprehension is affected by processing deficits, such as slow lexical activation, reduction in memory resources, slowed processing and/or intermittent deficiency, among others. We test the claims of two processing accounts, slowed processing and intermittent deficiency, and two versions of the Trace Deletion Hypothesis (TDH), in a computational framework for sentence processing (Lewis & Vasishth, 2005) implemented in ACT-R (Anderson, Byrne, Douglass, Lebiere, & Qin, 2004). The assumption of slowed processing is operationalized as slowIndividuals with agrammatic Broca's aphasia experience difficulty when processing reversible non-canonical sentences. Different accounts have been proposed to explain this phenomenon. The Trace Deletion account (Grodzinsky, 1995, 2000, 2006) attributes this deficit to an impairment in syntactic representations, whereas others (e.g., Caplan, Waters, Dede, Michaud, & Reddy, 2007; Haarmann, Just, & Carpenter, 1997) propose that the underlying structural representations are unimpaired, but sentence comprehension is affected by processing deficits, such as slow lexical activation, reduction in memory resources, slowed processing and/or intermittent deficiency, among others. We test the claims of two processing accounts, slowed processing and intermittent deficiency, and two versions of the Trace Deletion Hypothesis (TDH), in a computational framework for sentence processing (Lewis & Vasishth, 2005) implemented in ACT-R (Anderson, Byrne, Douglass, Lebiere, & Qin, 2004). The assumption of slowed processing is operationalized as slow procedural memory, so that each processing action is performed slower than normal, and intermittent deficiency as extra noise in the procedural memory, so that the parsing steps are more noisy than normal. We operationalize the TDH as an absence of trace information in the parse tree. To test the predictions of the models implementing these theories, we use the data from a German sentence—picture matching study reported in Hanne, Sekerina, Vasishth, Burchert, and De Bleser (2011). The data consist of offline (sentence-picture matching accuracies and response times) and online (eye fixation proportions) measures. From among the models considered, the model assuming that both slowed processing and intermittent deficiency are present emerges as the best model of sentence processing difficulty in aphasia. The modeling of individual differences suggests that, if we assume that patients have both slowed processing and intermittent deficiency, they have them in differing degrees.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Umesh Patil, Sandra HanneORCiDGND, Frank BurchertORCiDGND, Ria De BleserGND, Shravan VasishthORCiDGND
DOI:https://doi.org/10.1111/cogs.12250
ISSN:0364-0213
ISSN:1551-6709
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26016698
Title of parent work (English):Cognitive science : a multidisciplinary journal of anthropology, artificial intelligence, education, linguistics, neuroscience, philosophy, psychology ; journal of the Cognitive Science Society
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Aphasia; Cognitive architecture; Computational modeling; Eye movements; Individual differences; Non-canonical sentences; Sentence-picture matching
Volume:40
Number of pages:46
First page:5
Last Page:50
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Exzellenzbereich Kognitionswissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.