• search hit 2 of 2
Back to Result List

Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method

  • Pure and europium (Eu3+) doped cerium dioxide (CeO2) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of similar to 250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce4+ sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 degrees C, a remarkable high surface area of similar to 120 m(2) g (-1) is preserved whereas an enrichment of the surface Ce4+ relative to Ce3+ ions and relative strong europium emission with a lifetime of similar to 1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV andPure and europium (Eu3+) doped cerium dioxide (CeO2) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of similar to 250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce4+ sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 degrees C, a remarkable high surface area of similar to 120 m(2) g (-1) is preserved whereas an enrichment of the surface Ce4+ relative to Ce3+ ions and relative strong europium emission with a lifetime of similar to 1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV and visible spectral range, the europium doped ceria nanocrystals display a variable emission spanning the orange-red wavelengths. The tunable emission is explained by the heterogeneous distribution of the europium dopants within the ceria nanocrystals coupled with the progressive diffusion of the europium ions from the surface to the inner ceria sites and the selective participation of the ceria host to the emission sensitization. Effects of the bulk-doping and impregnation with europium on the ceria host structure and optical properties are also discussed.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Carmen Tiseanu, Vasile I. Parvulescu, Magali Boutonnet, Bogdan Cojocaru, Philipp A. Primus, Cristian M. Teodorescu, Conchita Solans, Margarita Sanchez Dominguez
DOI:https://doi.org/10.1039/c1cp21135h
ISSN:1463-9076 (print)
Parent Title (English):Physical chemistry, chemical physics : a journal of European Chemical Societies
Publisher:Royal Society of Chemistry
Place of publication:Cambridge
Document Type:Article
Language:English
Year of first Publication:2011
Year of Completion:2011
Release Date:2017/03/26
Volume:13
Issue:38
Pagenumber:11
First Page:17135
Last Page:17145
Funder:CSIC; Ministerio de Ciencia e Innovacion (MICINN, Spain) [CTQ2008-01979]; Generalitat de Catalunya (Agaur) [2009SGR-961]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert