• search hit 8 of 15
Back to Result List

Manifestations of Quantum-Mechanical Effects in Molecular Reaction Dynamics

  • This habilitation thesis summarises the research work performed by the author during the last quindecennial period. The dissertation reflects his main research interests, which revolve around quantum dynamics of small-sized molecular systems, including their interactions with electromagnetic radiation or dissipative environments. This covers various dynamical processes that involve bound-bound, bound-free, and free-free molecular transitions. The latter encompass light-triggered rovibrational or rovibronic dynamics in bound molecules, molecular photodissociation induced by weak or strong laser fields, state-to-state reactive and/or inelastic molecular collisions, and phonon-driven vibrational relaxation of adsorbates at solid surfaces. Although the dissertation covers different topics of molecular reaction dynamics, most of these studies focus on nuclear quantum effects and their manifestations in experimental measures. The latter are assessed through comparison between quantum and classical predictions, and/or direct confrontation ofThis habilitation thesis summarises the research work performed by the author during the last quindecennial period. The dissertation reflects his main research interests, which revolve around quantum dynamics of small-sized molecular systems, including their interactions with electromagnetic radiation or dissipative environments. This covers various dynamical processes that involve bound-bound, bound-free, and free-free molecular transitions. The latter encompass light-triggered rovibrational or rovibronic dynamics in bound molecules, molecular photodissociation induced by weak or strong laser fields, state-to-state reactive and/or inelastic molecular collisions, and phonon-driven vibrational relaxation of adsorbates at solid surfaces. Although the dissertation covers different topics of molecular reaction dynamics, most of these studies focus on nuclear quantum effects and their manifestations in experimental measures. The latter are assessed through comparison between quantum and classical predictions, and/or direct confrontation of theory and experiment. Most well known quantum concepts and effects will be encountered in this work. Yet, almost all these quantum notions find their roots in the central pillar of quantum theory, namely, the quantum superposition principle. Indeed, quantum coherence is the main source of most quantum effects, including interference, entanglement, and even tunneling. Thus, the common and predominant theme of all the investigations of this thesis is quantum coherence, and the survival or quenching of subsequent interference effects in various molecular processes. The lion's share of the dissertation is devoted to two associated quantum concepts, which are usually overlooked in computational molecular dynamics, viz. the Berry phase and identical nuclei symmetry. The importance of the latter in dynamical molecular processes and their direct fingerprints in experimental observables also rely very much on quantum coherence and entanglement. All these quantum phenomena are thoroughly discussed within the four main topics that form the core of this thesis. Each topic is described in a separate chapter, where it is briefly summarised and then illustrated with three peer-reviewed publications. The first topic deals with the relevance of quantum coherence/interference in molecular collisions, with a focus on the hydrogen-exchange reaction, H+H2 --> H2+H, and its isotopologues. For these collision processes, the significance of interference of probability amplitudes arises because of the existence of two main scattering pathways. The latter could be inelastic and reactive scattering, direct and time-delayed scattering, or two encircling reaction paths that loop in opposite senses around a conical intersection (CI) of the H3 molecular system. Our joint theoretical-experimental investigations of these processes reveal strong interference and geometric phase (GP) effects in state-to-state reaction probabilities and differential cross sections. However, these coherent effects completely cancel in integral cross sections and reaction rate constants, due to efficient dephasing of interference between the different scattering amplitudes. As byproducts of these studies, we highlight the discovery of two novel scattering mechanisms, which contradict conventional textbook pictures of molecular reaction dynamics. The second topic concerns the effect of the Berry phase on molecular photodynamics at conical intersections. To understand this effect, we developed a topological approach that separates the total molecular wavefunction of an unbound molecular system into two components, which wind in opposite senses around the conical intersection. This separation reveals that the only effect of the geometric phase is to change the sign of the relative phase of these two components. This in turn leads to a shift in the interference pattern of the molecular system---a phase shift that is reminiscient of the celebrated Aharonov-Bohm effect. This procedure is numerically illustrated with photodynamics at model standard CIs, as well as strong-field dissociation of diatomics at light-induced conical intersections (LICIs). Besides the fundamental aspect of these studies, their findings allow to interpret and predict the effect of the GP on the state-resolved or angle-resolved spectra of pump-probe experimental schemes, particularly the distributions of photofragments in molecular photodissociation experiments. The third topic pertains to the role of the indistinguishability of identical nuclei in molecular reaction dynamics, with an emphasis on dynamical localization in highly symmetric molecules. The main object of these studies is whether nuclear-spin statistics allow dynamical localization of the electronic, vibrational, or even rotational density on a specific molecular substructure or configuration rather than on another one which is identical (indistinguishable). Group-theoretic analysis of the symmetrized molecular wavefunctions of these systems shows that nuclear permutation symmetry engenders quantum entanglement between the eigenstates of the different molecular degrees of freedom. This subsequently leads to complete quenching of dynamical localization over indistinguishable molecular substructures---an observation that is in sharp contradiction with well known textbook views of iconic molecular processes. This is illustrated with various examples of quantum dynamics in symmetric double-well achiral molecules, such as the prototypical umbrella inversion motion of ammonia, electronic Kekulé dynamics in the benzene molecule, and coupled electron-nuclear dynamics in laser-induced indirect photodissociation of the dihydrogen molecular cation. The last part of the thesis is devoted to the development of approximate wavefunction approaches for phonon-induced vibrational relaxation of adsorbates (system) at surfaces (bath). Due to the so-called 'curse of dimensionality', these system-bath complexes cannot be handled with standard wavefunction methods. To alleviate the exponential scaling of the latter, we developed approximate yet quite accurate numerical schemes that have a polynomial scaling with respect to the bath dimensionality. The corresponding algorithms combine symmetry-based reductions of the full vibrational Hilbert space and iterative Krylov techniques. These approximate wavefunction approaches resemble the 'Bixon-Jortner model' and the more general 'quantum tier model'. This is illustrated with the decay of H-Si (D-Si) vibrations on a fully H(D)-covered silicon surface, which is modelled with a phonon-bath of more than two thousand oscillators. These approximate methods allow reliable estimation of the adsorbate vibrational lifetimes, and provide some insight into vibration-phonon couplings at solid surfaces. Although this topic is mainly computational, the developed wavefunction approaches permit to describe quantum entanglement between the system and bath states, and to embody some coherent effects in the time-evolution of the (sub-)system, which cannot be accounted for with the widely used 'reduced density matrix formalism'.show moreshow less
  • Diese Habilitationsschrift fasst die Forschungsarbeiten des Autors während der letzten 15 Jahre zusammen. Die wissenschaftliche Abhandlung spiegelt seine hauptsächlichen Forschungsinteressen wider, die sich um die Quantendynamik kleiner molekularer Systeme drehen, einschließlich ihrer Wechselwirkung mit elektromagnetischer Strahlung oder dissipativer Umgebungen. Dies umfasst verschiedene dynamische Prozesse, die Übergänge zwischen molekulare Zuständen (gebunden-gebunden, gebunden-frei und frei-frei) beinhalten. Dazu zählen lichtgesteuerte rovibronische Dynamik in gebundenen Molekülen, molekulare Photodissoziation durch schwache oder starke Laserfelder, reaktive und/oder inelastische molekulare Kollisionen und phononengesteuerte Schwingungsrelaxation von Adsorbaten auf Festkörperoberflächen. Obwohl die Habilitationsschrift verschiedene Themengebiete molekularer Reaktionsdynamik abdeckt, konzentrieren sich die meisten Arbeiten auf nukleare Quanteneffekte und wie sich diese in experimentellen Messgrößen äußern.. Dies wird durch denDiese Habilitationsschrift fasst die Forschungsarbeiten des Autors während der letzten 15 Jahre zusammen. Die wissenschaftliche Abhandlung spiegelt seine hauptsächlichen Forschungsinteressen wider, die sich um die Quantendynamik kleiner molekularer Systeme drehen, einschließlich ihrer Wechselwirkung mit elektromagnetischer Strahlung oder dissipativer Umgebungen. Dies umfasst verschiedene dynamische Prozesse, die Übergänge zwischen molekulare Zuständen (gebunden-gebunden, gebunden-frei und frei-frei) beinhalten. Dazu zählen lichtgesteuerte rovibronische Dynamik in gebundenen Molekülen, molekulare Photodissoziation durch schwache oder starke Laserfelder, reaktive und/oder inelastische molekulare Kollisionen und phononengesteuerte Schwingungsrelaxation von Adsorbaten auf Festkörperoberflächen. Obwohl die Habilitationsschrift verschiedene Themengebiete molekularer Reaktionsdynamik abdeckt, konzentrieren sich die meisten Arbeiten auf nukleare Quanteneffekte und wie sich diese in experimentellen Messgrößen äußern.. Dies wird durch den Vergleich von quantenphysikalischen und klassischen Vorhersagen und/oder eine direkte Gegenüberstellung von Theorie und Experiment beurteilt. Die meisten wohlbekannten quantenphysikalischen Konzepte und Effekte kommen in dieser Arbeit vor. Fast alle davon beruhen auf der zentralen Säule der Quantentheorie, dem Quanten-Superpositionsprinzip. Tatsächlich ist Quantenkohärenz die Hauptquelle der meisten Quanteneffekte, einschließlich Interferenz, Verschränkung und sogar Tunneln. Daher ist das gemeinsame und vorherrschende Thema aller Untersuchungen in dieser Arbeit die Quantenkoheränz und das Fortbestehen oder die Auslöschung der daraus folgenden Interferenzauswirkungen in verschiedenen molekularen Prozessen. Der Hauptanteil dieser Habilitationsschrift behandelt zwei verwandte Quantenkonzepte, die in Molekulardynamik-Rechnungen meist keine Beachtung finden, nämlich der Berry-Phase und der Symmetrie identischer Kerne. Deren Bedeutung in dynamischen molekularen Prozessen und ihre Anzeichen in experimentellen Messgrößen beruhen auch zu großen Teilen auf Quantenkohärenz und Verschränkung. Alle diese Quantenphänomene werden in den vier Hauptthemen, die den Kern dieser Arbeit bilden, umfassend behandelt. Jedes Themengebiet wird in einem separaten Kapitel beschrieben, in dem es kurz zusammengefasst und durch drei extern begutachtete Veröffentlichungen dargestellt wird. Das erste Themengebiet behandelt die Relevanz von Interferenz bei molekularen Kollisionen, wobei der Fokus auf der Wasserstoff-Austauschreaktion, H+H2 --> H2+H, und ihren Isotopologen liegt. Die Bedeutsamkeit der Interferenz der Wahrscheinlichkeits-Amplituden für solche Kollisionsprozesse erwächst aus der Existenz zweier Haupt-Streupfade. Dabei kann es sich um inelastische und reaktive Streuung, direkte und zeitverzögerte Streuung oder zwei gegenläufige Reaktionspfade um eine konische Durchschneidung (conical intersection, CI) im H3-Molekülsystem handeln. Unsere gemeinsamen theoretische und experimentelle Untersuchungen dieser Prozesse offenbaren einen starken Einfluss von Interferenz und der geometrischen Phase (GP) auf “state-to-state” Reaktionswahrscheinlichkeiten und differentielle Querschnitte. Allerdings heben sich diese kohärenten Effekte bei integralen Querschnitten und Reaktionsgeschwindigkeitskonstanten durch effiziente Dephasierung der Interferenz zwischen verschiedenen Streuamplituden komplett auf. Als Nebenprodukte dieser Studien heben wir die Entdeckung zweier neuartiger Streumechanismen hervor, die herkömmlichen Lehrbuchmeinungen widersprechen. Das zweite Thema dreht sich um die Auswirkungen der Berry-Phase auf molekulare Photodynamik an konischen Durchschneidungen. Um diesen Effekt zu verstehen, haben wir einen topologischen Ansatz entwickelt, der die gesamte molekulare Wellenfunktion eines ungebundenen molekularen Systems in zwei Komponenten trennt, die sich in unterschiedlichen Richtungen um die CI winden. Diese Unterteilung zeigt, dass die einzige Auswirkung der geometrischen Phase ein Vorzeichenwechsel der relativen Phase der beiden Komponenten ist. Dieser führt seinerseits zu einer Verschiebung im Interferenzmuster des molekularen Systems---eine Phasenverschiebung, die an den berühmten Aharonov–Bohm-Effekt erinnert. Dieses Verfahren wird numerisch anhand der Photodynamik von üblichen CI-Modellen sowie der Dissoziation von zweiatomigen Molekülen an lichtinduzierten konischen Durchschneidungen (light-induced conical intersections, LICIs) in starken Feldern dargestellt. Neben den fundamentellen Aspekten dieser Arbeiten erlauben die Ergebnisse auch, den Einfluss der geometrischen Phase auf zustandsaufgelöste oder winkelaufgelöste Spektren in “Pump-Probe”-Experimenten zu interpretieren und vorherzusagen, insbesondere die Verteilungen von Photofragmenten in Photodissoziationsexperimenten. Das dritte Themengebiet betrifft die Rolle der Ununterscheidbarkeit identischer Kerne in der molekularen Reaktionsdynamik, wobei der Schwerpunkt auf der dynamischen Lokalisierung hochsymmetrischer Moleküle liegt. Zentraler Gegenstand dieser Arbeiten ist die Frage, ob Kernspin-Statistiken eine dynamische Lokalisierung der Elektronen-, Vibrations- oder sogar Rotations-Dichte auf eine spezifische molekulare Unterstruktur oder Konfiguration anstelle einer anderen identischen (ununterscheidbaren) Teilstruktur erlauben. Gruppentheoretische Betrachtungen der symmetrisierten molekularen Wellenfunktionen dieser Systeme zeigen, dass die nukleare Permutationssymmetrie eine Quantenverschränkung zwischen den Eigenzuständen der verschiedenen molekularen Freiheitsgrade verursacht. Dies führt zu einer kompletten Löschung der dynamischen Lokalisierung auf ununterscheidbare molekulare Teilstrukturen---ein Ergebnis, das in krassem Widerspruch zu weitverbreiteten Lehrbuchansichten ikonischer molekularer Prozesse steht. Dies wird anhand verschiedener Beispiele für die Quantendynamik in achiralen Molekülen mit symmetrischem Doppelminimumspotential illustriert, wie etwa der prototypische pyramidale Inversion von Ammoniak, der elektronischen Kekulé-Dynamik im Benzol-Molekül und der gekoppelte Elektron-Kern-Dynamik bei der laser-induzierten indirekten Photodissoziation des Diwasserstoff-Kations. Der letzte Teil der Habilitationsschrift widmet sich der Entwicklung genäherter Wellenfunktions-Ansätze für die phononengesteuerte Schwingungsrelaxation von Adsorbaten (System) auf Oberflächen (Bad). Aufgrund des sogenannten “Fluchs der Dimensionalität” können diese System-Bad-Komplexe nicht mit üblichen Wellenfunktionsmethoden behandelt werden. Um deren exponentielle Skalierung zu vermindern, haben wir genäherte, aber recht genaue, numerische Verfahren mit polynomialer Skalierung in Bezug auf die Bad-Dimensionen entwickelt.. Die entsprechenden Algorithmen vereinen eine symmetriebasierte Verringerung des vollen Vibrations-Hilbertraums und iterative Krylov-Verfahren. Diese genäherten Wellenfunktionsansätze ähneln dem “Bixon-Jortner Modell” und dem allgemeineren “Quanten-Stufenmodell”. Sie werden auf den Zerfall der H(D)-Si-Schwingungen auf einer komplett mit H (D) bedeckten Siliziumoberfläche angewandt, die durch ein Phononenbad mit mehr als zweitausend Oszillatoren dargestellt wird. Diese Näherungsverfahren erlauben eine zuverlässige Abschätzung der Schwingungslebensdauern der Adsorbate und gewähren Einsicht in die Vibrations-Phonon-Kopplungen an Festkörperoberflächen. Obwohl dieses Thema hauptsächlich rechenbetont ist, ermöglichen die entwickelten Wellenfunktionsmethoden eine Beschreibung der Quantenverschränkung zwischen System- und Bad-Zuständen und die Illustration einiger kohärenter Effekte in der zeitlichen Entwicklung des (Teil-)Systems, die nicht mit dem häufig verwendeten reduzierten Dichtematrix-Formalismus erfasst werden können.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Foudhil BouaklineORCiDGND
Reviewer(s):Peter SaalfrankORCiDGND, David ClaryORCiDGND, Wolfgang DomckeORCiDGND
Publication type:Habilitation Thesis
Language:English
Year of first publication:2023
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/07/21
Release date:2023/07/27
Tag:Berry-Phase; Dissipation-Dekohärenz; Kernspin-Statistiken; Konischen Durchschneidungen; Molekulare Kollisionen
Berry Phase; Conical Intersections; Dissipation-Decoherence; Molecular Collisions; Nuclear-Spin-Statistics
Number of pages:316
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.