The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 127
Back to Result List

Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya

  • Precipitation in the form of rain and snowfall throughout the Himalaya controls river discharge and erosional processes and, thus, has a first-order control on the fluvial sediment flux. Here, we analyze daily precipitation data (1998-2007) of 80 weather stations from the northwestern Himalaya in order to decipher temporal and spatial moisture gradients. In addition, suspended sediment data allow assessment of the impact of precipitation on the fluvial sediment flux for a 10(3)-km(2) catchment (Baspa). We find that weather stations located at the mountain front receive similar to 80% of annual precipitation during summer (May-Oct), whereas stations in the orogenic interior, i.e., leeward of the orographic barrier, receive similar to 60% of annual precipitation during winter (Nov-Apr). In both regions 4-6 rainstorm days account for similar to 40% of the summer budgets, while rainstorm magnitude-frequency relations, derived from 40-year precipitation time-series, indicate a higher storm variability in the interior than in the frontalPrecipitation in the form of rain and snowfall throughout the Himalaya controls river discharge and erosional processes and, thus, has a first-order control on the fluvial sediment flux. Here, we analyze daily precipitation data (1998-2007) of 80 weather stations from the northwestern Himalaya in order to decipher temporal and spatial moisture gradients. In addition, suspended sediment data allow assessment of the impact of precipitation on the fluvial sediment flux for a 10(3)-km(2) catchment (Baspa). We find that weather stations located at the mountain front receive similar to 80% of annual precipitation during summer (May-Oct), whereas stations in the orogenic interior, i.e., leeward of the orographic barrier, receive similar to 60% of annual precipitation during winter (Nov-Apr). In both regions 4-6 rainstorm days account for similar to 40% of the summer budgets, while rainstorm magnitude-frequency relations, derived from 40-year precipitation time-series, indicate a higher storm variability in the interior than in the frontal region. This high variability in maximum annual rainstorm days in the orogenic interior is reflected by a high variability in extreme suspended sediment events in the Baspa Valley, which strongly affect annual erosion yields. The two most prominent 5-day-long erosional events account for 50% of the total 5-year suspended sediment flux and coincide with synoptic-scale monsoonal rainstorms. This emphasizes the erosional impact of the Indian Summer Monsoon as the main driving force for erosion processes in the orogenic interior, despite more precipitation falling during the winter season.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hendrik Wulf, Bodo BookhagenORCiDGND, Dirk Scherler
URL:http://www.sciencedirect.com/science/journal/0169555X
DOI:https://doi.org/10.1016/j.geomorph.2009.12.003
ISSN:0169-555X
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Geomorphology. - ISSN 0169-555X. - 118 (2010), 1-2, S. 13 - 21
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.