The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 5
Back to Result List

Quantifying the effect of sea level rise and flood defence-a point process perspective on coastal flood damage

  • In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal theIn contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Markus Boettle, D. Rybski, Jürgen Peter KroppORCiDGND
DOI:https://doi.org/10.5194/nhess-16-559-2016
ISSN:1561-8633
Parent Title (English):Natural hazards and earth system sciences
Publisher:Copernicus
Place of publication:Göttingen
Document Type:Article
Language:English
Year of first Publication:2016
Year of Completion:2016
Release Date:2020/03/22
Volume:16
Pagenumber:18
First Page:559
Last Page:576
Funder:European Community [308 497]; Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Peer Review:Referiert