• search hit 1 of 2
Back to Result List

Rapid oceanic and atmospheric changes during the Younger Dryas cold period

  • The Younger Dryas event, which began approximately 12,900 years ago, was a period of rapid cooling in the Northern Hemisphere, driven by large-scale reorganizations of patterns of atmospheric and oceanic circulation(1-3). Environmental changes during this period have been documented by both proxy-based reconstructions(3) and model simulations(4), but there is currently no consensus on the exact mechanisms of onset, stabilization or termination of the Younger Dryas(5-8). Here we present high-resolution records from two sediment cores obtained from Lake Krakenes in western Norway and the Nordic seas. Multiple proxies from Lake Krakenes are indicative of rapid alternations between glacial growth and melting during the later Younger Dryas. Meanwhile, reconstructed sea surface temperature and salinity from the Nordic seas show an alternation between sea-ice cover and the influx of warm, salty North Atlantic waters. We suggest that the influx of warm water enabled the westerly wind systems to drift northward, closer to their present-dayThe Younger Dryas event, which began approximately 12,900 years ago, was a period of rapid cooling in the Northern Hemisphere, driven by large-scale reorganizations of patterns of atmospheric and oceanic circulation(1-3). Environmental changes during this period have been documented by both proxy-based reconstructions(3) and model simulations(4), but there is currently no consensus on the exact mechanisms of onset, stabilization or termination of the Younger Dryas(5-8). Here we present high-resolution records from two sediment cores obtained from Lake Krakenes in western Norway and the Nordic seas. Multiple proxies from Lake Krakenes are indicative of rapid alternations between glacial growth and melting during the later Younger Dryas. Meanwhile, reconstructed sea surface temperature and salinity from the Nordic seas show an alternation between sea-ice cover and the influx of warm, salty North Atlantic waters. We suggest that the influx of warm water enabled the westerly wind systems to drift northward, closer to their present-day positions. The winds thus brought relatively warm maritime air to Northern Europe, resulting in rising temperatures and the melting of glaciers. Subsequent input of this fresh meltwater into the ocean spurred the formation of sea ice, which forced the westerly winds back to the south, cooling Northern Europe. We conclude that rapid alternations between these two states immediately preceded the termination of the Younger Dryas and the permanent transition to an interglacial state.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jostein Bakke, Øyvind Lie, Einar Heegaard, Trond Dokken, Gerald H. Haug, Hilary H. Birks, Peter Dulski, Trygve Nilsen
URL:http://www.nature.com/ngeo/index.html
DOI:https://doi.org/10.1038/ngeo439
ISSN:1752-0894
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Nature geoscience. - ISSN 1752-0894. - 2 (2009), 3, S. 202 - 205
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.