The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 52
Back to Result List

Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks

  • Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of theChemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60% and shape recovery of almost 90% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Pengfei Zhang, Marc BehlORCiDGND, Xingzhou PengGND, Maria BalkGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1021/acs.chemmater.9b00363
ISSN:0897-4756
ISSN:1520-5002
Title of parent work (English):Chemistry of materials : a publication of the American Chemical Society
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2019/08/13
Publication year:2019
Release date:2020/12/01
Volume:31
Issue:15
Number of pages:6
First page:5402
Last Page:5407
Funding institution:Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine - German Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF) [0315496]; Chinese Ministry of Science and Technology (MOST)Ministry of Science and Technology, China [2008DFA51170]; Helmholtz AssociationHelmholtz Association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.