• search hit 9 of 2867
Back to Result List

Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance

  • Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particleBimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Yuhang ZhaoORCiDGND, Radwan Mohamed SarhanORCiDGND, Alberto EljarratORCiD, Zdravko KochovskiORCiD, Christoph KochORCiD, Bernd SchmidtORCiDGND, Wouter-Willem Adriaan KoopmanORCiDGND, Yan LuORCiDGND
DOI:https://doi.org/10.1021/acsami.2c00221
ISSN:1944-8244
ISSN:1944-8252
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35389208
Title of parent work (English):ACS applied materials & interfaces
Publisher:American Chemical Society
Place of publishing:Washington, DC
Publication type:Article
Language:English
Date of first publication:2022/04/07
Publication year:2022
Release date:2024/04/05
Tag:4-nitrophenol; Au-Pd nanorods; PDA; photothermal conversion; surface plasmon
Volume:14
Issue:15
Number of pages:14
First page:17259
Last Page:17272
Funding institution:Deutsche Forschungsgemeinschaft (DFG, German Research Foundation); [182087777-SFB 951]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.