The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 131
Back to Result List

NBO analysis of polar and steric effect using the axial-equatorial equilibrium of cyclohexyl acetates as a probe

  • The proportion of the axial conformer increases in the ax reversible arrow eq equilibrium of cyclohexyl acetates (RCOOC(6)H(11), R reversible arrow Me, Et, iPr, tBu, CH(2)Cl, CHCl(2), CO(3). CH(2)Br, CHBr(2), CBr(3)) with the increasing size of the acyloxy substitution. The nature of this unexpected steric substituent effect, which is opposite to general stereochemical concepts, was studied by means of ab kiln MO method, accompanied by NBO and isodesmic calculations. NBO parameters seem to be good descriptors for quantitative prediction of the experimental Delta G degrees value of the title conformational equilibrium. The origin and propagation of the substituent effect of the polar substitutions (CH(2)Cl, CHCl(2), CCl(3), CH(2)Br, CHBr(2), CBr(3)) differ, however, from those of the pure alkyl (Me, Et, iPr, tBu) substitutions. The Delta G degrees value of the polar derivatives depends on the qC8 charges, on the occupation of the sigma(center dot)(C1-07) orbital and on the hyperconjugative pi(center dot)(c=O) -> sigma(centerThe proportion of the axial conformer increases in the ax reversible arrow eq equilibrium of cyclohexyl acetates (RCOOC(6)H(11), R reversible arrow Me, Et, iPr, tBu, CH(2)Cl, CHCl(2), CO(3). CH(2)Br, CHBr(2), CBr(3)) with the increasing size of the acyloxy substitution. The nature of this unexpected steric substituent effect, which is opposite to general stereochemical concepts, was studied by means of ab kiln MO method, accompanied by NBO and isodesmic calculations. NBO parameters seem to be good descriptors for quantitative prediction of the experimental Delta G degrees value of the title conformational equilibrium. The origin and propagation of the substituent effect of the polar substitutions (CH(2)Cl, CHCl(2), CCl(3), CH(2)Br, CHBr(2), CBr(3)) differ, however, from those of the pure alkyl (Me, Et, iPr, tBu) substitutions. The Delta G degrees value of the polar derivatives depends on the qC8 charges, on the occupation of the sigma(center dot)(C1-07) orbital and on the hyperconjugative pi(center dot)(c=O) -> sigma(center dot)(C10-X) and sigma(center dot)(C10-X) -> pi(center dot)(c=O) interactions. The substituent sensitivity of these NBC parameters for the two conformers differ to the effect that the ax reversible arrow eq equilibrium is shifted to the left side with increasing electron withdrawing character of the acyloxy group. The Delta G degrees values of the alkyl derivatives are interpreted in terms of the calculated dipole moments. The destabilization in the non-polar medium (the experimental Delta G degrees values used were measured in CD(2)Cl(2)) due to the enhanced dipolar character is more prominent in the case of the equatorial alkyl conformers. As the consequence, the ax reversible arrow eq equilibrium is shifted to the left despite the increasing size of the R group when going from Me to tBu substitution.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Kari Neuvonen, Helmi Neuvonen, Andreas KochORCiDGND, Erich KleinpeterORCiDGND
DOI:https://doi.org/10.1016/j.comptc.2010.12.033
ISSN:2210-271X
Title of parent work (English):Computational and theoretical chemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Ab initio MO computations; Conformational equilibria; Cyclohexyl esters; NBO analysis; Substituent effects
Volume:964
Issue:1-3
Number of pages:9
First page:234
Last Page:242
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.