• search hit 9 of 43
Back to Result List

The influence of polyelectrolyte charge density on the formation of multilayers of strong polyelectrolytes at low ionic strength

  • The influence of the charge density of polyelectrolytes on the growth of polyelectrolyte multilayers via layer- by-layer self-assembly from pure aqueous solutions was studied. Multilayers were built from strong polyanions, namely poly(styrenesulfonate) and an exfoliated synthetic hectorite, and cationic copolymers of diallyldimethylammonium chloride (DADMAC) with N-methyl-N-vinylformamide (NMVF) for which the composition and thus the charge density was varied systematically. The analysis of the system {cationic copolymer/poly(styrenesulfonate)} reveals that a critical linear charge density Ïc of 0.036 elementary charge/Å of contour length is necessary to obtain stable multilayer growth in pure water. Above Ïc, the increment of thickness/deposition cycle varies with the linear charge density of the cationic copolymers, in good agreement with current theories of polyelectrolyte solutions. As linear charge density increases, the system passes successively through a charge-dependent ?Debye-Hu ckel? regime and then through aThe influence of the charge density of polyelectrolytes on the growth of polyelectrolyte multilayers via layer- by-layer self-assembly from pure aqueous solutions was studied. Multilayers were built from strong polyanions, namely poly(styrenesulfonate) and an exfoliated synthetic hectorite, and cationic copolymers of diallyldimethylammonium chloride (DADMAC) with N-methyl-N-vinylformamide (NMVF) for which the composition and thus the charge density was varied systematically. The analysis of the system {cationic copolymer/poly(styrenesulfonate)} reveals that a critical linear charge density Ïc of 0.036 elementary charge/Å of contour length is necessary to obtain stable multilayer growth in pure water. Above Ïc, the increment of thickness/deposition cycle varies with the linear charge density of the cationic copolymers, in good agreement with current theories of polyelectrolyte solutions. As linear charge density increases, the system passes successively through a charge-dependent ?Debye-Hu ckel? regime and then through a chargeindependent ?strong-screening? regime where counterion condensation dominates the behavior. Analogous results were obtained for the variation of the basal spacing of internally structured hybrid multilayers {cationic copolymer/hectorite}. However, by contrast with the first system, no critical linear charge density was found for the hybrid system. This is explained by additional, nonelectrostatic interactions between the clay platelets and the formamide fragment.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Karine Glinel, Alain Moussa, Alain M. Jonas, André LaschewskyORCiDGND
Publication type:Article
Language:English
Year of first publication:2002
Publication year:2002
Release date:2017/03/24
Source:Langmuir. - 18 (2002), S. 1408 - 1412
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.