• search hit 9 of 375
Back to Result List

Tension-induced conformational changes of the Piezo protein-membrane nano-dome

  • Mechanosensation is a fundamental biological process that provides the basis for sensing touch and pain as well as for hearing and proprioception. A special class of ion-channel proteins known as mechanosensitive proteins convert the mechanical stimuli into electrochemical signals to mediate this process. Mechanosensitive proteins undergo conformational changes in response to mechanical force, which eventually leads to the opening of the proteins' ion channel. Mammalian mechanosensitive proteins remained a long sought-after mystery until 2010 when a family of two proteins - Piezo1 and Piezo2 - was identifed as mechanosensors [1]. The cryo-EM structures of Piezo1 and Piezo2 protein were resolved in the last years and reveal a propeller-shaped homotrimer with 114 transmembrane helices [2, 3, 4, 5]. The protein structures are curved and have been suggested to deform the surrounding membrane into a nano-dome, which mechanically responds to membrane tension resulting from external forces [2]. In this thesis, the conformations ofMechanosensation is a fundamental biological process that provides the basis for sensing touch and pain as well as for hearing and proprioception. A special class of ion-channel proteins known as mechanosensitive proteins convert the mechanical stimuli into electrochemical signals to mediate this process. Mechanosensitive proteins undergo conformational changes in response to mechanical force, which eventually leads to the opening of the proteins' ion channel. Mammalian mechanosensitive proteins remained a long sought-after mystery until 2010 when a family of two proteins - Piezo1 and Piezo2 - was identifed as mechanosensors [1]. The cryo-EM structures of Piezo1 and Piezo2 protein were resolved in the last years and reveal a propeller-shaped homotrimer with 114 transmembrane helices [2, 3, 4, 5]. The protein structures are curved and have been suggested to deform the surrounding membrane into a nano-dome, which mechanically responds to membrane tension resulting from external forces [2]. In this thesis, the conformations of membrane-embedded Piezo1 and Piezo2 proteins and their tension-induced conformational changes are investigated using molecular dynamics simulations. Our coarse-grained molecular dynamics simulations show that the Piezo proteins induce curvature in the surrounding membrane and form a stable protein-membrane nano-dome in the tensionless membrane. These membrane-embedded Piezo proteins, however, adopt substantially less curved conformations in our simulations compared to the cryo-EM structures solved in detergent micelles, which agrees with recent experimental investigations of the overall Piezo nano-dome shape in membrane vesicles [6, 7, 8]. At high membrane tension, the Piezo proteins attain nearly planar conformations in our simulations. Our systematic investigation of Piezo proteins under different membrane tensions indicates a half-maximal conformational response at membrane tension values rather close to the experimentally suggested values of Piezo activation [9, 10]. In addition, our simulations indicate a widening of the Piezo1 ion channel at high membrane tension, which agrees with the channel widening observed in recent nearly flattened cryo-EM structures of Piezo1 in small membrane vesicles [11]. In contrast, the Piezo2 ion channel does not respond to membrane tension in our simulations. These different responses of the Piezo1 and Piezo2 ion channels in our simulations are in line with patch-clamp experiments, in which Piezo1, but not Piezo2, was shown to be activated by membrane tension alone [12].show moreshow less
  • Mechanosensitivität ist ein fundamentaler biologischer Prozess, der sowohl dem Empfinden von Berührung und Schmerz als auch dem Hören und der Propriozeption zu Grunde liegt. Ein Klasse von Ionenkanalproteinen, die mechanosensitiven Proteine, wandeln dazu mechanische Reize in elektrochemische Signal um. Mechanische Kräfte führen zu Konformationsänderungen dieser mechanosensitiven Proteine, die dann wiederum die Öffnung der Ionenkanäle in den Proteinen bewirken. Die mechanosensitiven Proteine von Säugetieren wurden über viele Jahre gesucht und 2010 schließlich als Familie zweier Proteine – Piezo1 und Piezo2 – entdeckt. Die cryo-EM-Strukturen dieser Proteine wurden in den letzten Jahren entschlüsselt und zeigen einen propellerförmigen Homotrimer, der 114 Transmembranhelizes aufweist. Die Proteinstrukturen sind gekrümmt, was zu dem Vorschlag führte, dass die Proteine die umgebende Membran in eine Nanokuppel überführen, die mechanisch auf durch äußere Krafte induzierte Membranspannungen reagiert. In dieser Doktorarbeit werden dieMechanosensitivität ist ein fundamentaler biologischer Prozess, der sowohl dem Empfinden von Berührung und Schmerz als auch dem Hören und der Propriozeption zu Grunde liegt. Ein Klasse von Ionenkanalproteinen, die mechanosensitiven Proteine, wandeln dazu mechanische Reize in elektrochemische Signal um. Mechanische Kräfte führen zu Konformationsänderungen dieser mechanosensitiven Proteine, die dann wiederum die Öffnung der Ionenkanäle in den Proteinen bewirken. Die mechanosensitiven Proteine von Säugetieren wurden über viele Jahre gesucht und 2010 schließlich als Familie zweier Proteine – Piezo1 und Piezo2 – entdeckt. Die cryo-EM-Strukturen dieser Proteine wurden in den letzten Jahren entschlüsselt und zeigen einen propellerförmigen Homotrimer, der 114 Transmembranhelizes aufweist. Die Proteinstrukturen sind gekrümmt, was zu dem Vorschlag führte, dass die Proteine die umgebende Membran in eine Nanokuppel überführen, die mechanisch auf durch äußere Krafte induzierte Membranspannungen reagiert. In dieser Doktorarbeit werden die Konformationen von Piezo1 und Piezo2 in Membranen und die spannungsinduzierten Konformationsänderungen dieser Proteine in Molekulardynamiksimulationen untersucht. Unsere vergröberten Molekulardynamiksimulationen zeigen, dass die Piezo-Proteine zu Membrankrümmung und einer stabilen Protein-Membran-Nanokuppel führen. Die Piezo-Proteine nehmen in Membranen jedoch deutlich schwächer gekrümmte Konformationen an als in den aus Detergenzien bestehen Mizellen der cryo-EM-Strukturen, was mit jüngsten experimentellen Befunden zur Form der Piezo-Nanokuppel in Membranvesikeln übereinstimmt. Bei hohen Membranspannungen nehmen die Piezo-Proteine nahezu flache Konformationen in unseren Simulationen an. Unsere systematische Untersuchung von Piezo-Proteinen bei verschiedenen Membranspannungen zeigen halbmaximale Konformationsänderungen bei Werten der Membranspannung, die nahe bei experimentell gefundenen Aktivierungsspannungswerten von Piezo1 liegen. Zudem ist in unseren Simulationen eine Aufweitung des Ionenkanals von Piezo1 bei hohen Membranspannungen zu sehen, die mit Ionenkanalkonformationen in jüngsten, nahezu flachen cryo-EM-Strukuren von Piezo1 in kleinen Membranvesikeln übereinstimmt. In Gegensatz dazu zeigt der Ionenkanal von Piezo2 keine Konformationsänderungen bei hohen Membranspannungen. Diese unterschiedlichen Reaktionen der Ionenkanäle von Piezo1 und Piezo2 wiederum stimmen mit Befunden aus Patch-Clamp-Experimenten überein, in denen Piezo1, aber nicht Piezo2, alleinig durch Membranspannung aktiviert werden konnte.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sneha DixitORCiDGND
Reviewer(s):Thomas WeiklORCiDGND, Frank NoéORCiDGND, Herre Jelger RisseladaORCiDGND
Supervisor(s):Thomas Weikl, Frank Noé
Publication type:Doctoral Thesis
Language:English
Year of first publication:2023
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/06/13
Release date:2023/06/28
Tag:MD-Simulationen; Mechanosensitiven Proteine; Membranspannung; Piezo1; Piezo2
MD simulations; Mechanosensitive proteins; Membrane tension; Piezo1; Piezo2
Number of pages:94
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.