• search hit 78 of 129
Back to Result List

Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl- changes in cockroach salivary acinar cells

  • Lahn M, Dosche C, Hille C. Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl- changes in cockroach salivary acinar cells. Am J Physiol Cell Physiol 300: C1323-C1336, 2011. First published February 23, 2011; doi: 10.1152/ajpcell.00320.2010.-The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na+ and Cl- concentrations ([Na+](i), [Cl-](i)) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl- measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl-](i) is 1.6 times above the Cl- electrochemical equilibrium but is not influencedLahn M, Dosche C, Hille C. Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl- changes in cockroach salivary acinar cells. Am J Physiol Cell Physiol 300: C1323-C1336, 2011. First published February 23, 2011; doi: 10.1152/ajpcell.00320.2010.-The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na+ and Cl- concentrations ([Na+](i), [Cl-](i)) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl- measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl-](i) is 1.6 times above the Cl- electrochemical equilibrium but is not influenced by pharmacological inhibition of the Na+-K+-2Cl(-) cotransporter (NKCC) and anion exchanger using bumetanide and 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid disodium salt. In contrast, rapid Cl- reuptake after extracellular Cl- removal is almost totally NKCC mediated both in the absence and presence of dopamine. However, in physiological saline [Cl-](i) does not change during dopamine stimulation although dopamine stimulates fluid secretion in these glands. On the other hand, dopamine causes a decrease in the sodium-binding benzofuran isophthalate tetra-ammonium salt (SBFI) fluorescence and an increase in the Sodium Green fluorescence after 2P excitation. This opposite behavior of both dyes suggests a dopamine-induced [Na+](i) rise in the acinar cells, which is supported by the determined 2P-action cross sections of SBFI. The [Na+](i) rise is Cl- dependent and inhibited by bumetanide. The Ca2+-ionophore ionomycin also causes a bumetanide-sensitive [Na+](i) rise. We propose that a Ca2+-mediated NKCC activity in acinar peripheral cells attributable to dopamine stimulation serves for basolateral Na+ uptake during saliva secretion and that the concomitantly transported Cl- is recycled back to the bath.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Mattes Lahn, Carsten DoscheGND, Carsten Hille
DOI:https://doi.org/10.1152/ajpcell.00320.2010
ISSN:0363-6143 (print)
Parent Title (English):American journal of physiology : Cell physiology
Publisher:American Chemical Society
Place of publication:Bethesda
Document Type:Article
Language:English
Year of first Publication:2011
Year of Completion:2011
Release Date:2017/03/26
Tag:2P cross section; MQAE; Na+-K+-2Cl(-) cotransporter; SBFI; epithelial ion transport
Volume:300
Issue:6
Pagenumber:14
First Page:C1323
Last Page:C1336
Funder:German Federal Department for Science and Education BMBF [IP 03/517]; German Research Foundation DFG [1850/30001355, DO 1268/3-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert