The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 76 of 1009
Back to Result List

Soil erosion and organic carbon export by wet snow avalanches

  • Many mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse literature, we sampled sediment concentrations of n = 28 river-spanning snow-avalanche deposits (snow bridges) in the area around Davos, eastern Swiss Alps, and inferred an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km(-2) yr(-1), and 0.04 to 131 tC km(-2) yr(-1), respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, suchMany mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse literature, we sampled sediment concentrations of n = 28 river-spanning snow-avalanche deposits (snow bridges) in the area around Davos, eastern Swiss Alps, and inferred an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km(-2) yr(-1), and 0.04 to 131 tC km(-2) yr(-1), respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, such variability is inherent to the geometric scaling used for computing specific yields. Moreover, the widely applied method of linearly extrapolating plot scale sample data may be prone to substantial under- or overestimates. A comparison of our inferred yields with previously published work demonstrates the relevance of wet snow avalanches as prominent agents of soil erosion and transporters of biogeochemical constituents to mountain rivers. Given that a number of snow bridges persisted below the insulating debris cover well into the summer months, snow-avalanche deposits also contribute to regulating in-channel sediment and organic debris storage on seasonal timescales. Finally, our results underline the potential shortcomings of neglecting erosional processes in the winter and spring months in mountainous terrain subjected to prominent snow cover.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Oliver KorupORCiDGND, C. Rixen
DOI:https://doi.org/10.5194/tc-8-651-2014
ISSN:1994-0416
ISSN:1994-0424
Title of parent work (English):The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:8
Issue:2
Number of pages:8
First page:651
Last Page:658
Funding institution:Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.