The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 47
Back to Result List

Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars

  • Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Rainer HainichGND, Diana Pasemann, Helge Tobias TodtORCiD, Tomer ShenarORCiDGND, Andreas Alexander Christoph SanderORCiDGND, Wolf-Rainer HamannORCiDGND
DOI:https://doi.org/10.1051/0004-6361/201526241
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Magellanic Clouds; stars: Wolf-Rayet; stars: atmospheres; stars: early-type; stars: mass-loss; stars: winds, outflows
Volume:581
Number of pages:30
Funding institution:National Aeronautics and Space Administration; National Science Foundation (NASA); NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; ESO Telescopes at the La Silla Paranal Observatory [ID 077.D-0029]; Deutsche Forschungsgemeinschaft (DFG) [HA 1455/22]; Leibniz Graduate School for Quantitative Spectroscopy in Astrophysics; Leibniz Institute for Astrophysics Potsdam (AIP); Institute of Physics and Astronomy of the University of Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.