The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 87
Back to Result List

Separation of platinum and ruthenium by a sulphoxide modified polystyrene resin in laboratory column systems

  • The present study deals with the adsorption performance of fixed bed columns using powdered sulphoxide modified poly(styrene-co-divinylbenzene) (d(10) < 13 mu m, d(50) < 30 mu m, d(90) < 50 mu m) for the separation of platinum and ruthenium from hydrochloric acidic solutions containing both metals (c(Pt) = 20 mg/L, c(Ru) = 10 mg/L). The influence of hydrochloric acid concentration, temperature, flow rate, flow direction, redox potential and bed height on the breakthrough characteristics was examined. Platinum was separately adsorbed mainly induced by hydrochloric acid concentration and redox potential keeping platinum as Pt-IV and ruthenium as Ru-III. Ruthenium was separately adsorbed to 90% essentially induced by hydrochloric acid concentration, temperature and redox potential keeping platinum as Pt-IV and ruthenium predominantly as Ru-IV. Experimental data at optimised separation conditions were fitted to different kinetic models (Thomas, Yoon-Nelson, Bohart-Adams, Wolborska) to characterise the fixed bed column behaviour.The present study deals with the adsorption performance of fixed bed columns using powdered sulphoxide modified poly(styrene-co-divinylbenzene) (d(10) < 13 mu m, d(50) < 30 mu m, d(90) < 50 mu m) for the separation of platinum and ruthenium from hydrochloric acidic solutions containing both metals (c(Pt) = 20 mg/L, c(Ru) = 10 mg/L). The influence of hydrochloric acid concentration, temperature, flow rate, flow direction, redox potential and bed height on the breakthrough characteristics was examined. Platinum was separately adsorbed mainly induced by hydrochloric acid concentration and redox potential keeping platinum as Pt-IV and ruthenium as Ru-III. Ruthenium was separately adsorbed to 90% essentially induced by hydrochloric acid concentration, temperature and redox potential keeping platinum as Pt-IV and ruthenium predominantly as Ru-IV. Experimental data at optimised separation conditions were fitted to different kinetic models (Thomas, Yoon-Nelson, Bohart-Adams, Wolborska) to characterise the fixed bed column behaviour. Adsorption of both metals was well described by Thomas and Yoon-Nelson model with correlation coefficients R-2 >= 0.95 whereas Bohart-Adams and Wolborska model were less suitable. (C) 2015 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michael Trautmann, Hans-Jürgen HoldtORCiD
DOI:https://doi.org/10.1016/j.seppur.2015.05.013
ISSN:1383-5866
ISSN:1873-3794
Title of parent work (English):Separation and purification technology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Breakthrough curve; Kinetic model; Platinum group metals; Solid-phase extraction; Sulphoxide
Volume:149
Number of pages:9
First page:279
Last Page:287
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.