The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 56785
Back to Result List

The effect of Polycations on the Formation of Magnetite Nanoparticles

  • Nanoparticles of magnetite (Fe3O4) are envisioned to find used in diverse applications, ranging from magnetic data storage, inks, ferrofluids as well as in magnetic resonance imaging, drug delivery, and hyperthermia cancer treatment. Their magnetic properties strongly depend on their size and morphology, two properties that can be synthetically controlled. Achieving appropriate control under soft chemical conditions has so far remained a challenging endeavor. One proven way of exerting this desired control has been using a biomimetic approach that emulates the proteome of magnetotactic bacteria by adding poly-L-arginine in the co- precipitation of ferrous and ferric chloride. The objective of the work presented here is to understand the impact of this polycation on the formation mechanism of magnetite and, through rational design, to enhance the control we can exert on magnetite nanoparticle size and morphology. We developed a SAXS setup to temporally and structurally resolve the formation of magnetite in the presence of poly-L-arginineNanoparticles of magnetite (Fe3O4) are envisioned to find used in diverse applications, ranging from magnetic data storage, inks, ferrofluids as well as in magnetic resonance imaging, drug delivery, and hyperthermia cancer treatment. Their magnetic properties strongly depend on their size and morphology, two properties that can be synthetically controlled. Achieving appropriate control under soft chemical conditions has so far remained a challenging endeavor. One proven way of exerting this desired control has been using a biomimetic approach that emulates the proteome of magnetotactic bacteria by adding poly-L-arginine in the co- precipitation of ferrous and ferric chloride. The objective of the work presented here is to understand the impact of this polycation on the formation mechanism of magnetite and, through rational design, to enhance the control we can exert on magnetite nanoparticle size and morphology. We developed a SAXS setup to temporally and structurally resolve the formation of magnetite in the presence of poly-L-arginine in situ. Using analytical scattering models, we were able to separate the scattering contribution of a low-density 5 nm iron structure from the contribution of the growing nanoparticles. We identified that the low-density iron structure is a metastable precursor to the magnetite particles and that it is electrostatically stabilized by poly-L-arginine. In a process analogous to biomineralization, the presence of the charged macromolecule thus shifts the reaction mechanism from a thermodynamically controlled one to a kinetically controlled one. We identify this shift in reactions mechanism as the cornerstone of the proposed mechanism and as the crucial step in the paradigm of this extraordinary nanoparticle morphology and size control. Based on SAXS data, theoretical considerations suggest that an observed morphological transition between spherical, solid, and sub-structured mesocrystalline magnetite nanoparticles is induced through a pH-driven change in the wettability of the nanoparticle surface. With these results, we further demonstrate that SAXS can be an invaluable tool for investigating nanoparticle formation. We were able to change particle morphology from spherically solid particles to sub-structured mesocrystals merely by changing the precipitation pH. Improving the synthesis sustainability by substituting poly-L-arginine with renewable, polysaccharide-based polycations produced at the metric ton scale, we demonstrated that the ability to alter the reaction mechanism of magnetite can be generically attributed to the presence of polycations. Through meticulous analysis and the understanding of the formation mechanism, we were able to exert precise control over particle size and morphology, by adapting crucial synthesis parameters. We were thus able to grow mesocrystals up to 200 nm and solid nanocrystals of 100 nm by adding virtually any strong polycation. We further found a way to produce stable single domain magnetite at only slightly increased alkalinity, as magnetotactic bacteria do it. Thus through the understanding of the biological system, the consecutive biomimetic synthesis of magnetite and the following understanding of the mechanism involved in the in vitro synthesis, we managed to improve the synthetic control over the co-precipitation of magnetite, coming close biomineralization of magnetite in magnetotactic bacteria. Polyanions, in both natural as well as in synthetic systems, have been in the spotlight of recent research, yet our work shows the pivotal influence polycations have on the nucleation of magnetite. This work will contribute significantly to our ability to tailor magnetite nanoparticle size and morphology; in addition, we presume it will provide us with a model system for studying biomineralization of magnetite in vitro, putting the spotlight on the important influence of polycations, which have not had the scientific attention they deserve.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lucas KuhrtsORCiD
translated title (German):Der Effekt von Polykationen auf die Bildung von Magnetitnanopartikeln
Place of publishing:Potsdam
Reviewer(s):Peter FratzlORCiDGND, Sylvain Prévost, Liane Benning
Supervisor(s):Damien Faivre, Sylvain Prevost, Emanuel Schneck
Publication type:Doctoral Thesis
Language:English
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/01/24
Release date:2020/07/01
Tag:Biomimetic; Magnetite; Mechanism; Nanoparticle; SAXS
Number of pages:VIII, 99
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.