The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 59 of 2397
Back to Result List

Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes

Funktionale nanoporöse Kohlenstoffmaterialien auf Basis von Oxokohlenstoff-Metal Koordinationskomplexe

  • Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relativelyNanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes.show moreshow less
  • Nanoporöse Kohlenstoffmaterialien zeichnen sich u. a. durch ihre außergewöhnlichen Eigenschaften aus wie z. B. hohe Oberfläche, hohes Porenvolumen, hohe elektrische Leitfähigkeit und auch hohe chemische und thermische Stabilität. Aufgrund dessen finden sie Anwendung in den unterschiedlichsten Bereichen von der Speicherung elektrischer Energie bis hin zur Katalyse und Gasspeicherung. Die klassische Synthese von porösen Kohlenstoffmaterialien basiert u. a. auf der Nutzung von sogenannten anorganischen bzw. organischen Templaten und/oder chemischen Aktivierungsagenzien. Allerdings gelten diese Methoden eher als kompliziert, kostspielig und umweltschädlich. Außerdem wird eine gezielte Kontrolle der Produkteigenschaften durch die zahlreichen Prozesse erschwert, die sich bei den hohen Karbonisierungstemperaturen abspielen und folglich die Materialeigenschaften unvorhersehbar verändern können. In der vorliegenden Arbeit wird ein alternatives Konzept für die Synthese von nanoporösen Kohlenstoffmaterialien mit gezielt einstellbarenNanoporöse Kohlenstoffmaterialien zeichnen sich u. a. durch ihre außergewöhnlichen Eigenschaften aus wie z. B. hohe Oberfläche, hohes Porenvolumen, hohe elektrische Leitfähigkeit und auch hohe chemische und thermische Stabilität. Aufgrund dessen finden sie Anwendung in den unterschiedlichsten Bereichen von der Speicherung elektrischer Energie bis hin zur Katalyse und Gasspeicherung. Die klassische Synthese von porösen Kohlenstoffmaterialien basiert u. a. auf der Nutzung von sogenannten anorganischen bzw. organischen Templaten und/oder chemischen Aktivierungsagenzien. Allerdings gelten diese Methoden eher als kompliziert, kostspielig und umweltschädlich. Außerdem wird eine gezielte Kontrolle der Produkteigenschaften durch die zahlreichen Prozesse erschwert, die sich bei den hohen Karbonisierungstemperaturen abspielen und folglich die Materialeigenschaften unvorhersehbar verändern können. In der vorliegenden Arbeit wird ein alternatives Konzept für die Synthese von nanoporösen Kohlenstoffmaterialien mit gezielt einstellbaren Eigenschaften vorgestellt. Diese basiert auf der Nutzung von kristallinen Vorläufermaterialien, die aus der Koordination von den Anionen der Quadratsäure bzw. der Krokonsäure mit verschiedenen Metallionen (Zn2+, Cu2+, Ni2+ und Co2+) resultieren. Diese haben den Vorteil, dass Eigenschaften wie z. B. die Partikelmorphologie und Porosität gezielt durch die Wahl geeigneter Syntheseparameter (z. B. Temperatur, molares Verhältnis, Metallion und Ligand) eingestellt werden können. Beispielsweise führen Koordinationskomplexe von der Quadratsäure mit Zn2+ in Wasser zu porösen 3D würfelförmigen Mikrokristallen, die durch einfache thermische Behandlung unter Schutzgasatmosphäre zu den entsprechenden Kompositen umgewandelt werden. Ein anschließender Waschschritt führt zu den entsprechenden Kohlenstoffmaterialien unter Erhalt der makroskopischen Struktur der kristallinen Vorläufermaterialien. In diesem Zusammenhang weisen die resultierenden Kohlenstoffe ebenfalls eine 3D Würfelform mit einer hierarchischen Porenstruktur bestehend aus vernetzten Mikro-, Meso- und Makroporen auf. Ferner besitzen die Kohlenstoffe hohe Oberflächen und Porenvolumen von bis zu 1.957 m2 g-1 bzw. 2,31 cm3 g-1. Um die Vorteile dieser Eigenschaften zu demonstrieren, werden sie als Elektrodenmaterial für Superkondensatoren getestet und zeigen dabei vielversprechende Kapazitäten. Außerdem, werden sie auch als Trägermaterial für die Immobilisierung von Nickel-Nanopartikel verwendet und als heterogene Katalysatoren in der selektiven Hydrierung von 5-hydroxymethylfurfural zu 2,5-dimethylfuran in einem Festbettreaktor eingesetzt. Dabei wird eine gute Katalysatorleistung (Produktivität) bei minimalem Druckabfall in der Reaktorsäule erreicht.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Christian Mbaya ManiORCiDGND
URN:urn:nbn:de:kobv:517-opus4-407866
Advisor:Markus Antonietti
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/01/19
Release Date:2018/03/06
Tag:Koordinationskomplexe; Mesokristalle; Nanopartikel; Oxo-Kohlenstoff; Quadratsäure; nanoporöser Kohlenstoffpartikel
coordination complexes; mesocrystals; nanoparticles; nanoporous carbon particles; oxocarbon; squaric acid
Pagenumber:IV, 135
RVK - Regensburg Classification:VE 5070, VE 9857
Organizational units:Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Keine Bearbeitung 4.0 International