• search hit 53 of 129
Back to Result List

Preparation of Strained Axially Chiral (1,5)Naphthalenophanes by Photo-dehydro-Diels-Alder Reaction

  • The preparation of 10 (1,5)naphthalenophanes (10a-j) by photo-dehydro-Diels-Alder (PDDA) reaction is described. Owing to hindered rotation around the biaryl axis, compounds 10 are axially chiral and the separation of enantiomers by chiral HPLC was demonstrated in three cases (10a,b,e). The absolute configuration of the isolated enantiomers could be unambiguously determined by comparison of calculated and measured circular dichroism (CD) spectra. Furthermore, we analyzed ring strain phenomena of (1,5)naphthalenophanes 10. Depending on the length of the linker units, one can distinguish three classes of naphthalenophanes. Compounds 10a-c are highly strained (E-STR = 7-31 kcal/mol), and the strain is caused by small bond angles in the linker unit and deformation of the naphthalene moiety. Another type of strain is observed if the linker unit becomes relatively long (10g,h) originating from transannular interactions and is comparable with the well-known strain of medium sized rings. The naphthalenophanes 10d-f with a linker length ofThe preparation of 10 (1,5)naphthalenophanes (10a-j) by photo-dehydro-Diels-Alder (PDDA) reaction is described. Owing to hindered rotation around the biaryl axis, compounds 10 are axially chiral and the separation of enantiomers by chiral HPLC was demonstrated in three cases (10a,b,e). The absolute configuration of the isolated enantiomers could be unambiguously determined by comparison of calculated and measured circular dichroism (CD) spectra. Furthermore, we analyzed ring strain phenomena of (1,5)naphthalenophanes 10. Depending on the length of the linker units, one can distinguish three classes of naphthalenophanes. Compounds 10a-c are highly strained (E-STR = 7-31 kcal/mol), and the strain is caused by small bond angles in the linker unit and deformation of the naphthalene moiety. Another type of strain is observed if the linker unit becomes relatively long (10g,h) originating from transannular interactions and is comparable with the well-known strain of medium sized rings. The naphthalenophanes 10d-f with a linker length of 10-14 atoms are only marginally strained. To clearly discriminate the different sources of strain, we defined two geometrical parameters (average central dihedral angle delta(C) and naphthalene thickness D-N) and demonstrated that they are well-suited to indicate naphthalene deformation of our naphthalenophanes 10 as well as of ten model naphthalenophanes (I-X) with different linker lengths and linking positions.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Pablo WessigORCiDGND, Annika Matthes
DOI:https://doi.org/10.1021/ja109118m
ISSN:0002-7863 (print)
Parent Title (English):Journal of the American Chemical Society
Publisher:American Chemical Society
Place of publication:Washington
Document Type:Article
Language:English
Year of first Publication:2011
Year of Completion:2011
Release Date:2017/03/26
Volume:133
Issue:8
Pagenumber:9
First Page:2642
Last Page:2650
Funder:Deutsche Forschungsgemeinschaft [We1850-5/1-4]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert