The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 550
Back to Result List

Utilization of graphitic carbon nitride in dispersed media

Anwendung von graphitischem Kohlenstoffnitrid in dispergierten Medien

  • Utilization of sunlight for energy harvesting has been foreseen as sustainable replacement for fossil fuels, which would also eliminate side effects arising from fossil fuel consumption such as drastic increase of CO2 in Earth atmosphere. Semiconductor materials can be implemented for energy harvesting, and design of ideal energy harvesting devices relies on effective semiconductor with low recombination rate, ease of processing, stability over long period, non-toxicity and synthesis from abundant sources. Aforementioned criteria have attracted broad interest for graphitic carbon nitride (g-CN) materials, metal-free semiconductor which can be synthesized from low cost and abundant precursors. Furthermore, physical properties such as band gap, surface area and absorption can be tuned. g-CN was investigated as heterogeneous catalyst, with diversified applications from water splitting to CO2 reduction and organic coupling reactions. However, low dispersibility of g-CN in water and organic solvents was an obstacle for future improvements.Utilization of sunlight for energy harvesting has been foreseen as sustainable replacement for fossil fuels, which would also eliminate side effects arising from fossil fuel consumption such as drastic increase of CO2 in Earth atmosphere. Semiconductor materials can be implemented for energy harvesting, and design of ideal energy harvesting devices relies on effective semiconductor with low recombination rate, ease of processing, stability over long period, non-toxicity and synthesis from abundant sources. Aforementioned criteria have attracted broad interest for graphitic carbon nitride (g-CN) materials, metal-free semiconductor which can be synthesized from low cost and abundant precursors. Furthermore, physical properties such as band gap, surface area and absorption can be tuned. g-CN was investigated as heterogeneous catalyst, with diversified applications from water splitting to CO2 reduction and organic coupling reactions. However, low dispersibility of g-CN in water and organic solvents was an obstacle for future improvements. Tissue engineering aims to mimic natural tissues mechanically and biologically, so that synthetic materials can replace natural ones in future. Hydrogels are crosslinked networks with high water content, therefore are prime candidates for tissue engineering. However, the first requirement is synthesis of hydrogels with mechanical properties that are matching to natural tissues. Among different approaches for reinforcement, nanocomposite reinforcement is highly promising. This thesis aims to investigate aqueous and organic dispersions of g-CN materials. Aqueous g-CN dispersions were utilized for visible light induced hydrogel synthesis, where g-CN acts as reinforcer and photoinitiator. Varieties of methodologies were presented for enhancing g-CN dispersibility, from co-solvent method to prepolymer formation, and it was shown that hydrogels with diversified mechanical properties (from skin-like to cartilage-like) are accessible via g-CN utilization. One pot photografting method was introduced for functionalization of g-CN surface which provides functional groups towards enhanced dispersibility in aqueous and organic media. Grafting vinyl thiazole groups yields stable additive-free organodispersions of g-CN which are electrostatically stabilized with increased photophysical properties. Colloidal stability of organic systems provides transparent g-CN coatings and printing g-CN from commercial inkjet printers. Overall, application of g-CN in dispersed media is highly promising, and variety of materials can be accessible via utilization of g-CN and visible light with simple chemicals and synthetic conditions. g-CN in dispersed media will bridge emerging research areas from tissue engineering to energy harvesting in near future.show moreshow less
  • Sonnenlicht kann fossile Brennstoffe in der Energieerzeugung ersetzen und ermöglicht neben der Nutzung einer nachhaltigen Ressource dabei auch die deutliche Reduktion der Umweltbelastung in der Energieerzeugung. Die Verfügbarkeit geeigneter Energiegewinnungstechnologien hängt entscheidend von der Verfügbarkeit geeigneter Superkondensatoren (SC) ab. Ideale SC sollten sich in diesem Zusammenhang durch eine geringe Rekombinationsrate, gute Verarbeitbarkeit, Langzeitstabilität, Ungiftigkeit und die Verfügbarkeit aus nachhaltigen Ressourcen auszeichnen. Graphitisches Kohlenstoffnitrid (graphitic carbon nitride – g-CN), ein metall-freier Halbleiter, der aus nachhaltigen und in großer Menge verfügbaren Ausgangsstoffen hergestellt werden kann, ist als Material für dieses Eigenschaftsprofil hervorragend geeignet. Darüber hinaus können die Eigenschaften dieses Materials (innere Oberfläche, Bandlücke, Lichtabsorption) eingestellt werden. Daraus ergibt sich ein großes Forschungsinteresse z.B. im Bereich heterogener Katalyse, wie in derSonnenlicht kann fossile Brennstoffe in der Energieerzeugung ersetzen und ermöglicht neben der Nutzung einer nachhaltigen Ressource dabei auch die deutliche Reduktion der Umweltbelastung in der Energieerzeugung. Die Verfügbarkeit geeigneter Energiegewinnungstechnologien hängt entscheidend von der Verfügbarkeit geeigneter Superkondensatoren (SC) ab. Ideale SC sollten sich in diesem Zusammenhang durch eine geringe Rekombinationsrate, gute Verarbeitbarkeit, Langzeitstabilität, Ungiftigkeit und die Verfügbarkeit aus nachhaltigen Ressourcen auszeichnen. Graphitisches Kohlenstoffnitrid (graphitic carbon nitride – g-CN), ein metall-freier Halbleiter, der aus nachhaltigen und in großer Menge verfügbaren Ausgangsstoffen hergestellt werden kann, ist als Material für dieses Eigenschaftsprofil hervorragend geeignet. Darüber hinaus können die Eigenschaften dieses Materials (innere Oberfläche, Bandlücke, Lichtabsorption) eingestellt werden. Daraus ergibt sich ein großes Forschungsinteresse z.B. im Bereich heterogener Katalyse, wie in der Kohlenstoffdioxidreduktion, elektrolytischen Wasserspaltung und verschiedener organischer Kupplungsreaktionen. Unglücklicherweise ist die schlechte Dispergierbarkeit von g-CN in organischen Lösungsmitteln und Wasser ein wesentlicher Hinderungsgrund für die erfolgreiche Nutzbarmachung dieser hervorragenden Eigenschaften. Das Design von Materialien, die biologisches Gewebe in seinen mechanischen und biologischen Eigenschaften nachahmen und ersetzen können, ist das Ziel der Gewebekonstruktion (Tissue Engineering – TE). Hydrogele, also Netzwerke mit hohem Wassergehalt, gelten als die vielversprechendsten Materialen in diesem Forschungsfeld. Die Herstellung von Hydrogelen, die biologischem Gewebe in seinen mechanischen Eigenschaften ähnelt gilt allerdings als äußerst schwierig und erfordert die Stabilisierung der Netzwerke. Besonders der Einsatz von Nanoverbundstrukturen (nanocomposites) erscheint in diesem Zusammenhang vielversprechend. Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von g-CN in sowohl wässrigen, als auch organischen Dispersionen. Im Zuge dessen werden wässrige Dispersionen für die Synthese von Hydrogelen, bei der g-CN sowohl als Photoinitiator für die durch sichtbares Licht ausgelöste Vernetzung, als auch als Strukturverstärker fungiert. Zur Verbesserung der Dispergierbarkeit des g CN werden vielseitige Ansätze präsentiert, welche von der Verwendung von Co-Lösungsmitteln bis zur Präpolymerbildung reichen. Durch die aufgezeigten Ansätze können Hydrogele mit unterschiedlichen mechanischen Eigenschaften hergestellt werden (hautartig bis knorpelig). Darüber hinaus wird eine Ein-Topf Synthese für die Oberflächenfunktionalisierung vorgestellt, durch die die Dispergierbarkeit von g-CN in organischen und wässrigen Medien verbessert werden kann. Beispielsweise erlaubt die Oberflächenfunktionalisierung mit Vinylthiazol die Herstellung von kolloidal dispergiertem g-CN mit verbesserten photophysikalischen Eigenschaften ohne zusätzliche Additive und eröffnet damit die Möglichkeit transparenter g-CN Beschichtungen und ermöglicht die Druckbarkeit von g-CN aus handelsüblichen Tintenstrahldruckern. Die Anwendung von g-CN in dispergierten Medien ist vielversprechend, da eine große Zahl sehr vielfältiger Materialien durch die Kombination von g-CN mit sichtbarem Licht aus günstigen, nachhaltigen Ressourcen verfügbar ist. Daher ist zu erwarten, dass g-CN in dispergierten Medien verschiedene im Entstehen begriffene Forschungsfelder von TE bis zur Energiegewinnung überspannen wird.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Baris KumruGND
URN:urn:nbn:de:kobv:517-opus4-427339
DOI:https://doi.org/10.25932/publishup-42733
Supervisor(s):Markus Antonietti
Publication type:Doctoral Thesis
Language:English
Publication year:2018
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/04/02
Release date:2019/04/16
Tag:Hydrogelen; Photochemie; Polymerchemie; kolloidchemie
colloid chemistry; hydrogels; photochemistry; polymer chemistry
Number of pages:III, 190
RVK - Regensburg classification:VE 5070, VE 8007
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.