The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 16
Back to Result List

Thermodynamic analysis of the dissociation of the aldolase tetramer substituted at one or both of the subunit interfaces

  • The fructose-1,6-bis(phosphate) aldolase isologous tetramer tightly associates through two different subunit interfaces defined by its 222 symmetry. Both single- and double-interfacial mutant aldolases have a destabilized quaternary structure, but there is little effect on the catalytic activity. These enzymes are however thermolabile. This study demonstrates the temperature-dependent dissociation of the mutant enzymes and determines the dissociation free energies of both mutant and native aldolase. Subunit dissociation is measured by sedimentation equilibrium in the analytical ultracentrifuge. At 25C the tetramerdimer dissociation constants for each single-mutant enzyme are similar, about 10 -6 M. For the double-mutant enzyme, sedimentation velocity experiments on sucrose density gradients support a tetramermonomer equilibrium. Furthermore, sedimentation equilibrium experiments determined a dissociation constant of 10- 15 M3 for the double-mutant enzyme. By the same methods the upper limit for the dissociation constant of wild-typeThe fructose-1,6-bis(phosphate) aldolase isologous tetramer tightly associates through two different subunit interfaces defined by its 222 symmetry. Both single- and double-interfacial mutant aldolases have a destabilized quaternary structure, but there is little effect on the catalytic activity. These enzymes are however thermolabile. This study demonstrates the temperature-dependent dissociation of the mutant enzymes and determines the dissociation free energies of both mutant and native aldolase. Subunit dissociation is measured by sedimentation equilibrium in the analytical ultracentrifuge. At 25C the tetramerdimer dissociation constants for each single-mutant enzyme are similar, about 10 -6 M. For the double-mutant enzyme, sedimentation velocity experiments on sucrose density gradients support a tetramermonomer equilibrium. Furthermore, sedimentation equilibrium experiments determined a dissociation constant of 10- 15 M3 for the double-mutant enzyme. By the same methods the upper limit for the dissociation constant of wild-type aldolase A is approximately 10-28 M3, which indicates an extremely stable tetramer. The thermodynamic values describing monomer-tetramer and dimer-tetramer equilibria are analyzed with regard to possible cooperative interaction between the two subunit interfaces.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Dean R. Tolan, Benjamin Schuler, Peter T. Beernink, Rainer Jaenicke
URL:http://www.reference-global.com/doi/abs/10.1515/BC.2003.162
Publication type:Article
Language:English
Year of first publication:2003
Publication year:2003
Release date:2017/03/25
Source:Journal of biological chemistry. - 384 (2003), 10 - 11, S. 1463 - 1471
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.