The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 47 of 5333
Back to Result List

Photonic wiring of enzymatic reactions to photoactive entities for the construction of biohybrid electrodes

Photonische Kontaktierung von enzymatischen Reaktionen mit photoaktiven Entitäten für den Aufbau von biohybriden Elektroden

  • In this work, different strategies for the construction of biohybrid photoelectrodes are investigated and have been evaluated according to their intrinsic catalytic activity for the oxidation of the cofactor NADH or for the connection with the enzymes PQQ glucose dehydrogenase (PQQ-GDH), FAD-dependent glucose dehydrogenase (FAD-GDH) and fructose dehydrogenase (FDH). The light-controlled oxidation of NADH has been analyzed with InGaN/GaN nanowire-modified electrodes. Upon illumination with visible light the InGaN/GaN nanowires generate an anodic photocurrent, which increases in a concentration-dependent manner in the presence of NADH, thus allowing determination of the cofactor. Furthermore, different approaches for the connection of enzymes to quantum dot (QD)-modified electrodes via small redox molecules or redox polymers have been analyzed and discussed. First, interaction studies with diffusible redox mediators such as hexacyanoferrate(II) and ferrocenecarboxylic acid have been performed with CdSe/ZnS QD-modified gold electrodes toIn this work, different strategies for the construction of biohybrid photoelectrodes are investigated and have been evaluated according to their intrinsic catalytic activity for the oxidation of the cofactor NADH or for the connection with the enzymes PQQ glucose dehydrogenase (PQQ-GDH), FAD-dependent glucose dehydrogenase (FAD-GDH) and fructose dehydrogenase (FDH). The light-controlled oxidation of NADH has been analyzed with InGaN/GaN nanowire-modified electrodes. Upon illumination with visible light the InGaN/GaN nanowires generate an anodic photocurrent, which increases in a concentration-dependent manner in the presence of NADH, thus allowing determination of the cofactor. Furthermore, different approaches for the connection of enzymes to quantum dot (QD)-modified electrodes via small redox molecules or redox polymers have been analyzed and discussed. First, interaction studies with diffusible redox mediators such as hexacyanoferrate(II) and ferrocenecarboxylic acid have been performed with CdSe/ZnS QD-modified gold electrodes to build up photoelectrochemical signal chains between QDs and the enzymes FDH and PQQ-GDH. In the presence of substrate and under illumination of the electrode, electrons are transferred from the enzyme via the redox mediators to the QDs. The resulting photocurrent is dependent on the substrate concentration and allows a quantification of the fructose and glucose content in solution. A first attempt with immobilized redox mediator, i.e. ferrocenecarboxylic acid chemically coupled to PQQ-GDH and attached to QD-modified gold electrodes, reveal the potential to build up photoelectrochemical signal chains even without diffusible redox mediators in solution. However, this approach results in a significant deteriorated photocurrent response compared to the situation with diffusing mediators. In order to improve the photoelectrochemical performance of such redox mediator-based, light-switchable signal chains, an osmium complex-containing redox polymer has been evaluated as electron relay for the electronic linkage between QDs and enzymes. The redox polymer allows the stable immobilization of the enzyme and the efficient wiring with the QD-modified electrode. In addition, a 3D inverse opal TiO2 (IO-TiO2) electrode has been used for the integration of PbS QDs, redox polymer and FAD-GDH in order to increase the electrode surface. This results in a significantly improved photocurrent response, a quite low onset potential for the substrate oxidation and a broader glucose detection range as compared to the approach with ferrocenecarboxylic acid and PQQ-GDH immobilized on CdSe/ZnS QD-modified gold electrodes. Furthermore, IO-TiO2 electrodes are used to integrate sulfonated polyanilines (PMSA1) and PQQ-GDH, and to investigate the direct interaction between the polymer and the enzyme for the light-switchable detection of glucose. While PMSA1 provides visible light excitation and ensures the efficient connection between the IO-TiO2 electrode and the biocatalytic entity, PQQ-GDH enables the oxidation of glucose. Here, the IO-TiO2 electrodes with pores of approximately 650 nm provide a suitable interface and morphology, which is required for a stable and functional assembly of the polymer and enzyme. The successful integration of the polymer and the enzyme can be confirmed by the formation of a glucose-dependent anodic photocurrent. In conclusion, this work provides insights into the design of photoelectrodes and presents different strategies for the efficient coupling of redox enzymes to photoactive entities, which allows for light-directed sensing and provides the basis for the generation of power from sun light and energy-rich compounds.show moreshow less
  • In dieser Arbeit werden verschiedene Strategien für den Aufbau biohybrider Photoelektroden untersucht und hinsichtlich ihrer intrinsischen katalytischen Aktivität für die Oxidation des Kofaktors NADH oder für die Kontaktierung mit den Enzymen PQQ Glukosedehydrogenase (PQQ-GDH), FAD-abhängige Glukosedehydrogenase (FAD-GDH) und Fruktosedehydrogenase (FDH) evaluiert. Der Licht-gesteuerten Nachweis von NADH wurde mittels InGaN/GaN Nanodraht-modifizierten Elektroden untersucht. Bei Beleuchtung mit sichtbarem Licht generieren die InGaN/GaN Nanodrähte einen anodischen Photostrom, welcher in der Anwesenheit von NADH konzentrationsabhängig ansteigt und somit eine Bestimmung des Kofaktors erlaubt. Des Weiteren werden verschiedene Ansätze für die Kontaktierung von Enzymen mit Quantum Dot (QD)-modifizierten Elektroden unter Verwendung von kleinen Redoxmolekülen oder Redoxpolymeren analysiert und diskutiert. Zunächst wurden Interaktionsstudien mit den Redoxmediatoren Kaliumhexacyanoferrat(II) und Ferrocencarbonsäure in Lösung an CdSe/ZnSIn dieser Arbeit werden verschiedene Strategien für den Aufbau biohybrider Photoelektroden untersucht und hinsichtlich ihrer intrinsischen katalytischen Aktivität für die Oxidation des Kofaktors NADH oder für die Kontaktierung mit den Enzymen PQQ Glukosedehydrogenase (PQQ-GDH), FAD-abhängige Glukosedehydrogenase (FAD-GDH) und Fruktosedehydrogenase (FDH) evaluiert. Der Licht-gesteuerten Nachweis von NADH wurde mittels InGaN/GaN Nanodraht-modifizierten Elektroden untersucht. Bei Beleuchtung mit sichtbarem Licht generieren die InGaN/GaN Nanodrähte einen anodischen Photostrom, welcher in der Anwesenheit von NADH konzentrationsabhängig ansteigt und somit eine Bestimmung des Kofaktors erlaubt. Des Weiteren werden verschiedene Ansätze für die Kontaktierung von Enzymen mit Quantum Dot (QD)-modifizierten Elektroden unter Verwendung von kleinen Redoxmolekülen oder Redoxpolymeren analysiert und diskutiert. Zunächst wurden Interaktionsstudien mit den Redoxmediatoren Kaliumhexacyanoferrat(II) und Ferrocencarbonsäure in Lösung an CdSe/ZnS QD-modifizierten Goldelektroden durchgeführt um darauf aufbauend photoelektrochemische Signalketten zwischen QDs und den Enzymen FDH und PQQ-GDH aufzubauen und für den Nachweis von Fruktose und Glukose zu nutzen. In Anwesenheit von Substrat und unter Beleuchtung der Elektrode werden Elektronen von dem Enzym über die Redoxmediatoren zu den QDs übertragen. Der daraus resultierende Photostrom ist abhängig von der Substratkonzentration und erlaubt eine Bestimmung des Fruktose- und Glukosegehalts in Lösung. Ein erster Ansatz mit immobilisierten Redoxmediatoren, d.h. Ferrocencarbonsäure kovalent an PQQ-GDH gebunden und auf QD-modifizierten Goldelektroden immobilisiert, zeigt das Potential photoelektrochemische Signalketten auch ohne Redoxmediatoren in Lösung aufzubauen. Jedoch resultierte dieser Ansatz in einer deutlichen Verschlechterung der Photostromantwort im Vergleich zum Ansatz mit Mediatoren in Lösung. Um die photoelektrochemische Leistungsfähigkeit Redoxmediator-basierter, Licht-schaltbarer Signalketten zu verbessern, wurde ein Osmiumkomplex-Redoxpolymer für die elektronische Kontaktierung zwischen QDs und Enzymen untersucht. Das Redoxpolymer erlaubt eine stabile Immobilisierung des Enzymes und eine effiziente Kontaktierung mit der QD-modifizierten Elektrode. Zusätzlich wurde eine 3D „inverse opale“ TiO2 (IO-TiO2) Elektrode für die Integration der PbS QDs, des Redoxpolymers und der FAD-GDH verwendet um die Elektrodenoberfläche zu vergrößern. Dies führt zu einer deutlich verbesserten Leistungsfähigkeit hinsichtlich der Photostromantwort, des Startpotentials für die Substratoxidation und des Nachweisbereiches für Glukose im Vergleich zu dem Ansatz mit Ferrocencarbonsäure und PQQ-GDH immobilisiert auf CdSe/ZnS QD-modifizierten Goldelektroden. Des Weiteren wurden IO-TiO2 Elektroden verwendet um sulfonierte Polyaniline (PMSA1) und PQQ-GDH zu integrieren und die direkte Interaktion zwischen dem Polymer und dem Enzym für den Licht-schaltbaren Nachweis von Glukose zu untersuchen. Während PMSA1 eine Anregung mit sichtbaren Licht ermöglicht und die effiziente Verbindung zwischen der IO-TiO2-Elektrode und der biokatalytischen Einheit sicherstellt, ermöglicht die PQQ-GDH die Oxidation von Glukose. Hierbei bieten die IO-TiO2-Elektroden mit Poren von ca. 650 nm eine geeignete Schnittstelle und Morphologie, welche für eine stabile und funktionelle Assemblierung des Polymers und Enzyms benötigt wird. Die erfolgreiche Integration des Polymers und des Enzyms kann durch die Ausbildung eines Glukose-abhängigen anodischen Photostroms bestätigt werden. Zusammenfassend gibt diese Arbeit Einblicke in den Aufbau von Photoelektroden und präsentiert verschiedene, effiziente Kopplungsstrategien zwischen Redoxenzymen und photoaktiven Komponenten, welche einen Licht-gesteuerten Nachweis von Analyten ermöglichen und die Grundlage für die Energieerzeugung aus Licht und energiereichen Verbindungen bilden.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marc RiedelORCiD
URN:urn:nbn:de:kobv:517-opus4-417280
Supervisor(s):Frieder W. Scheller
Publication type:Doctoral Thesis
Language:English
Publication year:2018
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2018/08/17
Release date:2018/10/24
Tag:Biokatalyse; Enzyme; Photoelektrchemischer Sensor; Photokatalyse; Quantum Dots
biocatalysis; enzymes; photocatalysis; photoelectrochemical sensor; quantum dots
Number of pages:VIII, 168
RVK - Regensburg classification:WD 5055, VE 9857, VK 5607
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.