The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 43 of 182
Back to Result List

Toward a robust quantum-chemical description of organic mixed-valence systems

  • The electronic coupling between redox sites in mixed-valence systems has attracted the interest of the chemistry community for a long time. Many computational studies have focused on trying to determine its magnitude as a function of the nature of the redox sites and of the bridge(s) between them. However, in most instances, the quantum-chemical methodologies that have been employed suffer from intrinsic errors that lead to either an overlocalized or an overdelocalized character of the electronic structure. These deficiencies prevent an accurate depiction of the degree of charge (de)localization in the system and, as a result, of the extent of electronic coupling. Here we use nonempirically tuned long-range corrected density functional theory and show that it provides a robust, efficient approach to characterize organic mixed-valence systems. We first demonstrate the performance of this approach via a study of representative Robin-Day class-II (localized) and class-III (delocalized) complexes. We then examine a borderlineThe electronic coupling between redox sites in mixed-valence systems has attracted the interest of the chemistry community for a long time. Many computational studies have focused on trying to determine its magnitude as a function of the nature of the redox sites and of the bridge(s) between them. However, in most instances, the quantum-chemical methodologies that have been employed suffer from intrinsic errors that lead to either an overlocalized or an overdelocalized character of the electronic structure. These deficiencies prevent an accurate depiction of the degree of charge (de)localization in the system and, as a result, of the extent of electronic coupling. Here we use nonempirically tuned long-range corrected density functional theory and show that it provides a robust, efficient approach to characterize organic mixed-valence systems. We first demonstrate the performance of this approach via a study of representative Robin-Day class-II (localized) and class-III (delocalized) complexes. We then examine a borderline class-II/class-III complex, which had proven difficult to describe accurately with standard density functional theory and Hartree-Fock methods.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christopher Sutton, Thomas Körzdörfer, Veaceslav Coropceanu, Jean-Luc Bredas
DOI:https://doi.org/10.1021/jp410461v
ISSN:1932-7447
Title of parent work (English):The journal of physical chemistry : C, Nanomaterials and interfaces
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:118
Issue:8
Number of pages:10
First page:3925
Last Page:3934
Funding institution:National Science Foundation under its MRSEC Program [DMR-0819885]; Chemistry Research Instrumentation and Facilities (CRIF) Program [CHE-0946869]; AvH-Foundation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.