• search hit 5 of 5
Back to Result List

## Relatively free doppelsemigroups

• A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic K-theory. We consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as interassociative semigroups, restrictive bisemigroups, dimonoids, and trioids. In the lecture notes numerous examples of doppelsemigroups and of strong doppelsemigroups are given. The independence of axioms of a strong doppelsemigroup is established. A free product in the variety of doppelsemigroups is presented. We also construct a free (strong) doppelsemigroup, a free commutative (strong) doppelsemigroup, a free n-nilpotent (strong) doppelsemigroup, a free n-dinilpotent (strong) doppelsemigroup, and a free left n-dinilpotent doppelsemigroup. Moreover, the least commutative congruence, the least n-nilpotent congruence, the leastA doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic K-theory. We consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as interassociative semigroups, restrictive bisemigroups, dimonoids, and trioids. In the lecture notes numerous examples of doppelsemigroups and of strong doppelsemigroups are given. The independence of axioms of a strong doppelsemigroup is established. A free product in the variety of doppelsemigroups is presented. We also construct a free (strong) doppelsemigroup, a free commutative (strong) doppelsemigroup, a free n-nilpotent (strong) doppelsemigroup, a free n-dinilpotent (strong) doppelsemigroup, and a free left n-dinilpotent doppelsemigroup. Moreover, the least commutative congruence, the least n-nilpotent congruence, the least n-dinilpotent congruence on a free (strong) doppelsemigroup and the least left n-dinilpotent congruence on a free doppelsemigroup are characterized. The book addresses graduate students, post-graduate students, researchers in algebra and interested readers.
• Eine Doppelalgebra ist eine auf einem Vektorraum definierte Algebra mit zwei binären linearen assoziativen Operationen. Doppelalgebren spielen eine herausragende Rolle in der algebraischen K-Theorie. Wir betrachten Doppelhalbgruppen, d.h Mengen mit zwei binären assoziativen Operationen, welche die Axiome der Doppelhalbgruppe erfüllen. Doppelhalbgruppen sind Veralgemeinerungen von Halbgruppen und sie stehen in Beziehung zu solchen algebraischen Strukturen wie interassoziative Halbgruppen, restriktive Bihalbgruppen, Dimonoiden und Trioden. In dieser Lecture Notes werden eine Vielzahl von Beispielen für Doppelhalbgruppen und strong Doppelhalbgruppen gegeben. Die Unabhängigkeit der Axiome für Doppelhalbgruppen wird nachgewiesen. Ein freies Produkt in der Varietät der Doppelhalbgruppen wird vorgestellt. Wir konstruieren auch eine freie (kommutative) strong Doppelhalbgruppe, eine freie n-dinilpotent (strong) Doppelhalbgruppe und eine freie Links n-dinilpotent Doppelhalbgruppe. Darüber hinaus werden die kleinste n-nilpotente Kogruenz, dieEine Doppelalgebra ist eine auf einem Vektorraum definierte Algebra mit zwei binären linearen assoziativen Operationen. Doppelalgebren spielen eine herausragende Rolle in der algebraischen K-Theorie. Wir betrachten Doppelhalbgruppen, d.h Mengen mit zwei binären assoziativen Operationen, welche die Axiome der Doppelhalbgruppe erfüllen. Doppelhalbgruppen sind Veralgemeinerungen von Halbgruppen und sie stehen in Beziehung zu solchen algebraischen Strukturen wie interassoziative Halbgruppen, restriktive Bihalbgruppen, Dimonoiden und Trioden. In dieser Lecture Notes werden eine Vielzahl von Beispielen für Doppelhalbgruppen und strong Doppelhalbgruppen gegeben. Die Unabhängigkeit der Axiome für Doppelhalbgruppen wird nachgewiesen. Ein freies Produkt in der Varietät der Doppelhalbgruppen wird vorgestellt. Wir konstruieren auch eine freie (kommutative) strong Doppelhalbgruppe, eine freie n-dinilpotent (strong) Doppelhalbgruppe und eine freie Links n-dinilpotent Doppelhalbgruppe. Darüber hinaus werden die kleinste n-nilpotente Kogruenz, die kleinste n-dinilpotente Kongruenz auf der freien (strong) Doppelhalbgruppe und die kleinste n-dinilpotente Kongruenz auf einer freien Doppelhalbgruppe charakterisiert. Das Buch richtet sich an Graduierte, Doktoranden, Forscher in Algebra und interessierte Leser.