• search hit 4 of 13
Back to Result List

Hydrodynamics of Saturn’s dense rings

  • The space missions Voyager and Cassini together with earthbound observations re-vealed a wealth of structures in Saturn’s rings. There are, for example, waves being excited at ring positions which are in orbital resonance with Saturn’s moons. Other structures can be assigned to embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Further-more, irregular radial structures are observed in the range from 10 meters until kilometers. Here some of these structures will be discussed in the frame of hydrodynamical modeling of Saturn’s dense rings. For this purpose we will characterize the physical properties of the ring particle ensemble by mean field quantities and point to the special behavior of the transport coefficients. We show that unperturbed rings can become unstable and how diffusion acts in the rings. Additionally, the alternative streamline formalism is introduced to describe perturbed regions of dense rings with applications to the wake damping and the dispersion relation of the density waves.

Download full text files

  • pmnr574.pdfeng

    SHA-1: ae25d7ad20cb2296c875111d998bd98032342a03

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author:Martin Seiß, Frank SpahnGND
Parent Title (English):Postprints der Universität Potsdam : Postprint Mathematisch Naturwissenschaftliche Reihe
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (574)
Document Type:Postprint
Date of first Publication:2019/02/05
Year of Completion:2011
Publishing Institution:Universität Potsdam
Release Date:2019/02/06
Tag:granular gas; hydrodynamics; instabilities; planetary rings
First Page:191
Last Page:218
Source:Mathematical Modelling of Natural Phenomena 6 (2011) 4, pp. 191-218 DOI: 10.1051/mmnp/20116409
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer Review:Referiert
Publication Way:Open Access
Grantor:Cambridge University Press (CUP)
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht