• search hit 4 of 23
Back to Result List

## On the exact simulation of (skew) Brownian diffusions with discontinuous drift

### Simulation exacte de diffusions browniennes (biaisées) avec dérive discontinue

• This thesis is focused on the study and the exact simulation of two classes of real-valued Brownian diffusions: multi-skew Brownian motions with constant drift and Brownian diffusions whose drift admits a finite number of jumps. The skew Brownian motion was introduced in the sixties by Itô and McKean, who constructed it from the reflected Brownian motion, flipping its excursions from the origin with a given probability. Such a process behaves as the original one except at the point 0, which plays the role of a semipermeable barrier. More generally, a skew diffusion with several semipermeable barriers, called multi-skew diffusion, is a diffusion everywhere except when it reaches one of the barriers, where it is partially reflected with a probability depending on that particular barrier. Clearly, a multi-skew diffusion can be characterized either as solution of a stochastic differential equation involving weighted local times (these terms providing the semi-permeability) or by its infinitesimal generator as Markov process. In thisThis thesis is focused on the study and the exact simulation of two classes of real-valued Brownian diffusions: multi-skew Brownian motions with constant drift and Brownian diffusions whose drift admits a finite number of jumps. The skew Brownian motion was introduced in the sixties by Itô and McKean, who constructed it from the reflected Brownian motion, flipping its excursions from the origin with a given probability. Such a process behaves as the original one except at the point 0, which plays the role of a semipermeable barrier. More generally, a skew diffusion with several semipermeable barriers, called multi-skew diffusion, is a diffusion everywhere except when it reaches one of the barriers, where it is partially reflected with a probability depending on that particular barrier. Clearly, a multi-skew diffusion can be characterized either as solution of a stochastic differential equation involving weighted local times (these terms providing the semi-permeability) or by its infinitesimal generator as Markov process. In this thesis we first obtain a contour integral representation for the transition semigroup of the multiskew Brownian motion with constant drift, based on a fine analysis of its complex properties. Thanks to this representation we write explicitly the transition densities of the two-skew Brownian motion with constant drift as an infinite series involving, in particular, Gaussian functions and their tails. Then we propose a new useful application of a generalization of the known rejection sampling method. Recall that this basic algorithm allows to sample from a density as soon as one finds an - easy to sample - instrumental density verifying that the ratio between the goal and the instrumental densities is a bounded function. The generalized rejection sampling method allows to sample exactly from densities for which indeed only an approximation is known. The originality of the algorithm lies in the fact that one finally samples directly from the law without any approximation, except the machine's. As an application, we sample from the transition density of the two-skew Brownian motion with or without constant drift. The instrumental density is the transition density of the Brownian motion with constant drift, and we provide an useful uniform bound for the ratio of the densities. We also present numerical simulations to study the efficiency of the algorithm. The second aim of this thesis is to develop an exact simulation algorithm for a Brownian diffusion whose drift admits several jumps. In the literature, so far only the case of a continuous drift (resp. of a drift with one finite jump) was treated. The theoretical method we give allows to deal with any finite number of discontinuities. Then we focus on the case of two jumps, using the transition densities of the two-skew Brownian motion obtained before. Various examples are presented and the efficiency of our approach is discussed.
• In dieser Dissertation wird die exakte Simulation zweier Klassen reeller Brownscher Diffusionen untersucht: die multi-skew Brownsche Bewegung mit konstanter Drift sowie die Brownsche Diffusionen mit einer Drift mit endlich vielen Sprüngen. Die skew Brownsche Bewegung wurde in den sechzigern Jahren von Itô and McKean als eine Brownsche Bewegung eingeführt, für die die Richtung ihrer Exkursionen am Ursprung zufällig mit einer gegebenen Wahrscheinlichkeit ausgewürfelt wird. Solche asymmetrischen Prozesse verhalten sich im Wesentlichen wie der Originalprozess außer bei 0, das sich wie eine semipermeable Barriere verhält. Allgemeiner sind skew Diffusionsprozesse mit mehreren semipermeablen Barrieren, auch multi-skew Diffusionen genannt, Diffusionsprozesse mit Ausnahme an den Barrieren, wo sie jeweils teilweise reflektiert wird. Natürlich ist eine multi-skew Diffusion durch eine stochastische Differentialgleichung mit Lokalzeiten (diese bewirken die Semipermeabilität) oder durch ihren infinitesimalen Generator als Markov ProzessIn dieser Dissertation wird die exakte Simulation zweier Klassen reeller Brownscher Diffusionen untersucht: die multi-skew Brownsche Bewegung mit konstanter Drift sowie die Brownsche Diffusionen mit einer Drift mit endlich vielen Sprüngen. Die skew Brownsche Bewegung wurde in den sechzigern Jahren von Itô and McKean als eine Brownsche Bewegung eingeführt, für die die Richtung ihrer Exkursionen am Ursprung zufällig mit einer gegebenen Wahrscheinlichkeit ausgewürfelt wird. Solche asymmetrischen Prozesse verhalten sich im Wesentlichen wie der Originalprozess außer bei 0, das sich wie eine semipermeable Barriere verhält. Allgemeiner sind skew Diffusionsprozesse mit mehreren semipermeablen Barrieren, auch multi-skew Diffusionen genannt, Diffusionsprozesse mit Ausnahme an den Barrieren, wo sie jeweils teilweise reflektiert wird. Natürlich ist eine multi-skew Diffusion durch eine stochastische Differentialgleichung mit Lokalzeiten (diese bewirken die Semipermeabilität) oder durch ihren infinitesimalen Generator als Markov Prozess charakterisiert. In dieser Arbeit leiten wir zunächst eine Konturintegraldarstellung der Übergangshalbgruppe der multi-skew Brownschen Bewegung mit konstanter Drift durch eine feine Analyse ihrer komplexen Eigenschaften her. Dank dieser Darstellung wird eine explizite Darstellung der Übergangswahrscheinlichkeiten der zweifach-skew Brownschen Bewegung mit konstanter Drift als eine unendliche Reihe Gaußscher Dichten erhalten. Anschlieẞend wird eine nützliche Verallgemeinerung der bekannten Verwerfungsmethode vorgestellt. Dieses grundlegende Verfahren ermöglicht Realisierungen von Zufallsvariablen, sobald man eine leicht zu simulierende Zufallsvariable derart findet, dass der Quotient der Dichten beider Zufallsvariablen beschränkt ist. Die verallgmeinerte Verwerfungsmethode erlaubt eine exakte Simulation für Dichten, die nur approximiert werden können. Die Originalität unseres Verfahrens liegt nun darin, dass wir, abgesehen von der rechnerbedingten Approximation, exakt von der Verteilung ohne Approximation simulieren. In einer Anwendung simulieren wir die zweifach-skew Brownsche Bewegung mit oder ohne konstanter Drift. Die Ausgangsdichte ist dabei die der Brownschen Bewegung mit konstanter Drift, und wir geben gleichmäẞige Schranken des Quotienten der Dichten an. Dazu werden numerische Simulationen gezeigt, um die Leistungsfähigkeit des Verfahrens zu demonstrieren. Das zweite Ziel dieser Arbeit ist die Entwicklung eines exakten Simulationsverfahrens für Brownsche Diffusionen, deren Drift mehrere Sprünge hat. In der Literatur wurden bisher nur Diffusionen mit stetiger Drift bzw. mit einer Drift mit höchstens einem Sprung behandelt. Unser Verfahren erlaubt den Umgang mit jeder endlichen Anzahl von Sprüngen. Insbesondere wird der Fall zweier Sprünge behandelt, da unser Simulationsverfahren mit den bereits erhaltenen Übergangswahrscheinlichkeiten der zweifach-skew Brownschen Bewegung verwandt ist. An mehreren Beispielen demonstrieren wir die Effizienz unseres Ansatzes.