• search hit 4 of 50
Back to Result List

Flavonoid insertion into cell walls improves wood properties

  • Wood has an excellent mechanical performance, but wider utilization of this renewable resource as an engineering material is limited by unfavorable properties such as low dimensional stability upon moisture changes and a low durability. However, some wood species are known to produce a wood of higher quality by inserting mainly phenolic substances in the already formed cell walls a process so-called heartwood formation. In the present study, we used the heartwood formation in black locust (Robinia pseudoacacia) as a source of bioinspiration and transferred principles of the modification in order to improve spruce wood properties (Picea abies) by a chemical treatment with commercially available flavonoids. We were able to effectively insert hydrophobic flavonoids in the cell wall after a tosylation treatment for activation. The chemical treatment reduced the water uptake of the wood cell walls and increased the dimensional stability of the bulk spruce wood. Further analysis of the chemical interaction of the flavonoid with theWood has an excellent mechanical performance, but wider utilization of this renewable resource as an engineering material is limited by unfavorable properties such as low dimensional stability upon moisture changes and a low durability. However, some wood species are known to produce a wood of higher quality by inserting mainly phenolic substances in the already formed cell walls a process so-called heartwood formation. In the present study, we used the heartwood formation in black locust (Robinia pseudoacacia) as a source of bioinspiration and transferred principles of the modification in order to improve spruce wood properties (Picea abies) by a chemical treatment with commercially available flavonoids. We were able to effectively insert hydrophobic flavonoids in the cell wall after a tosylation treatment for activation. The chemical treatment reduced the water uptake of the wood cell walls and increased the dimensional stability of the bulk spruce wood. Further analysis of the chemical interaction of the flavonoid with the structural cell wall components revealed the basic principle of this bioinspired modification. Contrary to established modification treatments, which mainly address the hydroxyl groups of the carbohydrates with hydrophilic substances, the hydrophobic flavonoids are effective by a physical bulking in the cell wall most probably stabilized by pi-pi interactions. A biomimetic transfer of the underlying principle may lead to alternative cell wall modification procedures and improve the performance of wood as an engineering material.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Mahmut Ali ErmeydanORCiDGND, Etienne Cabane, Admir Masic, Joachim Kötz, Ingo Burgert
DOI:https://doi.org/10.1021/am301266k
ISSN:1944-8244 (print)
Parent Title (English):ACS applied materials & interfaces
Publisher:American Chemical Society
Place of publication:Washington
Document Type:Article
Language:English
Year of first Publication:2012
Year of Completion:2012
Release Date:2017/03/26
Tag:Raman spectroscopy; chemical modification; dimensional stability; heartwood formation; nanoindentation; wood cell wall
Volume:4
Issue:11
Pagenumber:8
First Page:5782
Last Page:5789
Funder:Max Planck Society, Germany; Bundesamt fur Umwelt (BAFU); Lignum, Switzerland; Alexander von Humboldt Foundation; Max Planck Society; Federal Ministry of Education and Research
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert