• search hit 19 of 129
Back to Result List

Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates

  • We report on the ionothermal synthesis of porous carbon materials from a variety of carbohydrate precursors (i.e. D-glucose, D-fructose, D-xylose, and starch) using 1-butyl-3-methylimidazolium tetrachloroferrate(III), [Bmim][FeCl(4)] as a reusable solvent and catalyst. The carbon materials derived from these different carbohydrates are similar in terms of particle size and chemical composition, possessing relatively high surface areas from 44 to 155 m(2) g(-1) after ionothermal processing, which can be significantly increased to > 350 m(2) g(-1) by further thermal treatment (e. g. post-carbonization at 750 degrees C). CO(2) and N(2) sorption analysis, combined with Hg intrusion porosimetry, reveals a promising hierarchical pore structuring to these carbon materials. The ionic liquid [Bmim][FeCl(4)] has a triple role: it acts as both a soft template to generate the characterized pore structuring, solvent and as a catalyst resulting in enhanced ionothermal carbon yields. Importantly from a process point of view, the ionic liquid can beWe report on the ionothermal synthesis of porous carbon materials from a variety of carbohydrate precursors (i.e. D-glucose, D-fructose, D-xylose, and starch) using 1-butyl-3-methylimidazolium tetrachloroferrate(III), [Bmim][FeCl(4)] as a reusable solvent and catalyst. The carbon materials derived from these different carbohydrates are similar in terms of particle size and chemical composition, possessing relatively high surface areas from 44 to 155 m(2) g(-1) after ionothermal processing, which can be significantly increased to > 350 m(2) g(-1) by further thermal treatment (e. g. post-carbonization at 750 degrees C). CO(2) and N(2) sorption analysis, combined with Hg intrusion porosimetry, reveals a promising hierarchical pore structuring to these carbon materials. The ionic liquid [Bmim][FeCl(4)] has a triple role: it acts as both a soft template to generate the characterized pore structuring, solvent and as a catalyst resulting in enhanced ionothermal carbon yields. Importantly from a process point of view, the ionic liquid can be successfully recovered and reused. The current work shows that ionothermal synthesis has the potential to be an effective, low cost, and green reusable synthetic route towards sustainable porous carbon materials.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Zai-Lai Xie, Robin J. White, Jens Weber, Andreas TaubertORCiDGND, Magdalena M. Titirici
DOI:https://doi.org/10.1039/c1jm00013f
ISSN:0959-9428 (print)
Parent Title (English):Journal of materials chemistry
Publisher:Royal Society of Chemistry
Place of publication:Cambridge
Document Type:Article
Language:English
Year of first Publication:2011
Year of Completion:2011
Release Date:2017/03/26
Volume:21
Issue:20
Pagenumber:9
First Page:7434
Last Page:7442
Funder:University of Potsdam; Max Planck Institute of Colloids and Interfaces (Colloid Chemistry Department); Fonds der Chemischen Industrie; Chinese Science Council; Max Planck Society
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert