• search hit 13 of 75
Back to Result List

Identifizierung und Charakterisierung der Isoflavon-umsetzenden Enzyme aus dem humanen Darmbakterium Slackia isoflavoniconvertens

Identification and characterization of isoflavone-converting enzymes of the human gut bacterium Slackia isoflavoniconvertens

  • Aufgrund ihrer potenziell gesundheitsfördernden Wirkung sind die polyphenolischen Isoflavone für die menschliche Ernährung von großem Interesse. Eine Vielzahl an experimentellen und epidemiologischen Studien zeigen für die in Soja enthaltenen Isoflavone Daidzein und Genistein eine präventive Wirkung bezüglich hormon-abhängiger und altersbedingter Erkrankungen, wie Brust- und Prostatakrebs, Osteoporose, Herz-Kreislauf-Erkrankungen sowie des menopausalen Syndroms. Die Metabolisierung und Bioaktivierung dieser sekundären Pflanzenstoffe durch die humane intestinale Darmmikrobiota ist individuell unterschiedlich. Nur in einem geringen Teil der westlichen Bevölkerung wird der Daidzein-Metabolit Equol durch spezifische Darmbakterien gebildet. Ein isoliertes Equol-produzierendes Bakterium des menschlichen Darmtrakts ist Slackia isoflavoniconvertens. Anhand dieser Spezies sollten die bislang unbekannten, an der Umsetzung von Daidzein und Genistein beteiligten Enzyme identifiziert und charakterisiert werden. Fermentationsexperimente mit S.Aufgrund ihrer potenziell gesundheitsfördernden Wirkung sind die polyphenolischen Isoflavone für die menschliche Ernährung von großem Interesse. Eine Vielzahl an experimentellen und epidemiologischen Studien zeigen für die in Soja enthaltenen Isoflavone Daidzein und Genistein eine präventive Wirkung bezüglich hormon-abhängiger und altersbedingter Erkrankungen, wie Brust- und Prostatakrebs, Osteoporose, Herz-Kreislauf-Erkrankungen sowie des menopausalen Syndroms. Die Metabolisierung und Bioaktivierung dieser sekundären Pflanzenstoffe durch die humane intestinale Darmmikrobiota ist individuell unterschiedlich. Nur in einem geringen Teil der westlichen Bevölkerung wird der Daidzein-Metabolit Equol durch spezifische Darmbakterien gebildet. Ein isoliertes Equol-produzierendes Bakterium des menschlichen Darmtrakts ist Slackia isoflavoniconvertens. Anhand dieser Spezies sollten die bislang unbekannten, an der Umsetzung von Daidzein und Genistein beteiligten Enzyme identifiziert und charakterisiert werden. Fermentationsexperimente mit S. isoflavoniconvertens zeigten, dass die Gene der Daidzein und Genistein-umsetzenden Enzyme nicht konstitutiv exprimiert werden, sondern induziert werden müssen. Mit Hilfe der zweidimensionalen differentiellen Gelelektrophorese wurden sechs Proteine detektiert, welche in einer S. isoflavoniconvertens-Kultur in Anwesenheit von Daidzein induziert wurden. Auf Grundlage einzelner Peptidsequenzen erfolgte die Sequenzierung eines Genkomplexes mit den in gleicher Orientierung angeordneten Genen der durch Daidzein induzierten Proteine. Sequenzvergleiche identifizierten zudem äquivalente Genprodukte zu den Proteinen von S. isoflavoniconvertens in anderen Equolproduzierenden Bakterien. Nach der heterologen Expression in Escherichia coli wurden drei dieser Gene durch enzymatische Aktivitätstests als Daidzein-Reduktase (DZNR), Dihydrodaidzein-Reduktase (DHDR) und Tetrahydrodaidzein-Reduktase (THDR) identifiziert. Die Kombination der E. coli-Zellextrakte führte zur vollständigen Umsetzung von Daidzein über Dihydrodaidzein zu Equol. Neben Daidzein setzte die DZNR auch Genistein zu Dihydrogenistein um. Dies erfolgte mit einer größeren Umsatzgeschwindigkeit im Vergleich zur Reduktion von Daidzein zu Dihydrodaidzein. Enzymatische Aktivitätstests mit dem Zellextrakt von S. isoflavoniconvertens zeigten ebenfalls eine schnellere Umsetzung von Genistein. Die Kombination der rekombinanten DHDR und THDR führte zur Umsetzung von Dihydrodaidzein zu Equol. Der korrespondierende Metabolit 5-Hydroxyequol konnte als Endprodukt des Genistein-Metabolismus nicht detektiert werden. Zur Reinigung der drei identifizierten Reduktasen wurden diese genetisch an ein Strep-tag fusioniert und mittels Affinitätschromatographie gereinigt. Die übrigen durch Daidzein induzierten Proteine IfcA, IfcBC und IfcE wurden ebenfalls in E. coli exprimiert und als Strep-Fusionsproteine gereinigt. Vergleichende Aktivitätstests identifizierten das induzierte Protein IfcA als Dihydrodaidzein-Racemase. Diese katalysierte die Umsetzung des (R)- und (S)-Enantiomers von Dihydrodaidzein und Dihydrogenistein zum korrespondierenden Racemat. Neben dem Elektronentransfer-Flavoprotein IfcBC wurden auch die THDR, DZNR und IfcE als FAD-haltige Flavoproteine identifiziert. Zudem handelte es sich bei IfcE um ein Eisen-Schwefel-Protein. Nach Induktion der für die Daidzein-Umsetzung kodierenden Gene wurden mehrere verschieden lange mRNA-Transkripte gebildet. Dies zeigte, dass die Transkription des durch Daidzein induzierten Genkomplexes in S. isoflavoniconvertens nicht in Form eines einzelnen Operonsystems erfolgte. Auf Grundlage der identifizierten Daidzein-umsetzenden Enzyme kann der Mechanismus der bakteriellen Umsetzung von Isoflavonen durch S. isoflavoniconvertens eingehend erforscht werden. Die ermittelten Gensequenzen der durch Daidzein induzierten Proteine sowie die korrespondierenden Gene weiterer Equol-produzierender Bakterien bieten zudem die Möglichkeit der mikrobiellen Metagenomanalyse im humanen Darmtrakt.show moreshow less
  • Gut bacteria play a crucial role in the metabolism of dietary isoflavones which have been implicated in the prevention of hormone-dependent and age-related diseases. Only the intestinal bacteria are able to catalyze the bioactivation of the main soybean isoflavones daidzein and genistein to equol and 5-hydroxy-equol, respectively. Although several equolforming gut bacteria have been isolated in recent years, the knowledge on the involved enzymes is still scarce. Slackia isoflavoniconvertens represents one of the few equol-forming gut bacteria isolated from humans. Growth experiments with S. isoflavoniconvertens indicated that the enzymes catalyzing the conversion of daidzein and genistein were inducible by these isoflavones. Using two-dimensional difference gel electrophoresis (2D-DIGE), several proteins were found to be upregulated in S. isoflavoniconvertens cells grown in the presence of daidzein. Based on selected protein sequences, a cluster of eight genes was identified encoding the daidzeininduced proteins. Sequence analysisGut bacteria play a crucial role in the metabolism of dietary isoflavones which have been implicated in the prevention of hormone-dependent and age-related diseases. Only the intestinal bacteria are able to catalyze the bioactivation of the main soybean isoflavones daidzein and genistein to equol and 5-hydroxy-equol, respectively. Although several equolforming gut bacteria have been isolated in recent years, the knowledge on the involved enzymes is still scarce. Slackia isoflavoniconvertens represents one of the few equol-forming gut bacteria isolated from humans. Growth experiments with S. isoflavoniconvertens indicated that the enzymes catalyzing the conversion of daidzein and genistein were inducible by these isoflavones. Using two-dimensional difference gel electrophoresis (2D-DIGE), several proteins were found to be upregulated in S. isoflavoniconvertens cells grown in the presence of daidzein. Based on selected protein sequences, a cluster of eight genes was identified encoding the daidzeininduced proteins. Sequence analysis revealed also similarities of daidzein-induced proteins to corresponding enzymes from other equol-forming human gut bacteria. The heterologous expression of three of those proteins in Escherichia coli and enzyme activity tests identified them as a daidzein reductase (DZNR), a dihydrodaidzein reductase (DHDR) and a tetrahydrodaidzein reductase (THDR). The combined cell extracts catalyzed the complete conversion of daidzein to equol. The recombinant DZNR also converted genistein to the intermediate dihydrogenistein at higher rates than observed for the conversion of daidzein to dihydrodaidzein. Higher rates were also observed with S. isoflavoniconvertens cell extracts. In combination, the recombinant DHDR and THDR catalyzed the reduction of dihydrodaidzein to equol, while the corresponding formation product 5-hydroxy-equol was not observed. The three reductases were functionally expressed as Strep-tag fusion proteins and purified by a one-step affinity chromatography. In addition, the remaining daidzein-induced proteins IfcA, IfcBC and IfcE were successfully expressed in E. coli and purified. In a comparative enzyme activity test, IfcA was identified as a dihydrodaidzein racemase, which converts the (R)- and (S)-enantiomers of dihydrodaidzein and dihydrogenistein to the corresponding racemate. Flavin analysis revealed flavin adenine dinucleotide (FAD) as the cofactor of THDR, DZNR, IfcE and also of the putative heterodimeric electron tansfer flavoprotein IfcBC. In addition, IfcE was identified as iron-sulfur enzyme. The analysis of intergenic regions and gene expression indicated a non-operon genetic structure of daidzein-induced proteins, because mRNA expression occurs at different transcriptional units. Furthermore, the transcription start site was determined for ifcA as the first gene of daidzein-induced gene cluster. In summary, the identification and incipient characterization of the daidzein-induced enzymes provides the basis for detection corresponding genes in other equol-forming gut bacteria within the microbial metagenome of the human gut. The results enable also further studies to elucidate the catalytic mechanism underlying the isoflavone bioactivation by S. isoflavoniconvertens and to clarify the regulation of enzyme induction.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christine Schröder
URN:urn:nbn:de:kobv:517-opus4-80065
Supervisor(s):Michael Blaut, Annett Braune
Publication type:Doctoral Thesis
Language:German
Publication year:2015
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2015/07/13
Release date:2015/09/11
Tag:Darmbakterium; Equol; Isoflavone; Proteine; Reduktase
equol; gut microbiota; isoflavones; protein; reductase
Number of pages:X, 129
RVK - Regensburg classification:WD 5055, WF 1350
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.