The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 13 of 1242
Back to Result List

Protein interactions with cyanidin-3-glucoside and its influence on alpha-amylase activity

  • BACKGROUND: Recent studies indicate that the bioavailability of anthocyanins is extremely low. One of the possible reasons could be their binding to proteins. Therefore, the binding affinity of cyanidin-3-glucoside (Cy3glc) to HSA and alpha-amylase was investigated by the quenching of protein tryptophan fluorescence. From data obtained, the binding constants and the free Gibbs energy were calculated. The changes in conformation of the proteins tested were studied with circular dichroism and the influence of binding on alpha-amylase activity determined. RESULTS: Cy3glc quenched the tryptophan fluorescence and upon ligand binding a change in protein structure was observed related to the corresponding decrease in the et-amylase activity. The association constants of 25 to 77 x 10(3) L mol(-1) were calculated for different proteins, indicating weak interactions of non-covalent nature. Competitive binding with HSA in the presence of 8-anilino-1-naphthalene sulfonic acid suggest involvement of hydrophobic interactions, in the case of HSABACKGROUND: Recent studies indicate that the bioavailability of anthocyanins is extremely low. One of the possible reasons could be their binding to proteins. Therefore, the binding affinity of cyanidin-3-glucoside (Cy3glc) to HSA and alpha-amylase was investigated by the quenching of protein tryptophan fluorescence. From data obtained, the binding constants and the free Gibbs energy were calculated. The changes in conformation of the proteins tested were studied with circular dichroism and the influence of binding on alpha-amylase activity determined. RESULTS: Cy3glc quenched the tryptophan fluorescence and upon ligand binding a change in protein structure was observed related to the corresponding decrease in the et-amylase activity. The association constants of 25 to 77 x 10(3) L mol(-1) were calculated for different proteins, indicating weak interactions of non-covalent nature. Competitive binding with HSA in the presence of 8-anilino-1-naphthalene sulfonic acid suggest involvement of hydrophobic interactions, in the case of HSA the possible site being subdomain IIA. CONCLUSION: The strongest affinity of Cy3glc for HSA being at pH 7 underlines its potential in transport and distribution of the phenolic compounds in organisms. An influence on salivary amylase activity is possible when drinking berry juices with high anthocyanins content.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stefanie Wiese, Sonja Gaertner, Harshadrai Manilal RawelORCiDGND, Peter Winterhalter, Sabine E. Kulling
URL:http://www3.interscience.wiley.com/journal/1294/home
DOI:https://doi.org/10.1002/Jsfa.3407
ISSN:0022-5142
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Journal of the science of food and agriculture. - ISSN 0022-5142. - 89 (2009), 1, S. 33 - 40
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.