The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 9
Back to Result List

Nature of the steric Omega(S), E-R and E-S ' substituent constants - comparison with the aid of NBO and STERIC analysis

  • The nature of the major steric substituent constant scales for alkyl substituents, i.e. Omega(S), E-R and E-S' scales, was studied with the aid of the NBO and the natural steric (STERIC) analyses. Cyclohexyl esters R-3-CCOOC6H11 (R = alkyl or H) were used as the model compounds. Special emphasis was laid on the potential contribution of the polar component in these steric substituent parameters. In the light of our model the Omega(S) scale seems to be dominantly a steric substituent constant scale as is seen on the strengths of the good correlation between the Omega(S) constants of the CR3 group and the total steric exchange energy values E-TSEE for the model compounds. However, the Omega(S) values also seem to include a minor electronic component due to the varying electrostatic effect via the C alpha atom. On the other hand, E-R and E-S' parameters largely hinge on the size dependent polar effect of the CR3 alkyl group. By way of our model this repulsive interaction can be quantified by descriptor Delta q(OCO), the natural chargeThe nature of the major steric substituent constant scales for alkyl substituents, i.e. Omega(S), E-R and E-S' scales, was studied with the aid of the NBO and the natural steric (STERIC) analyses. Cyclohexyl esters R-3-CCOOC6H11 (R = alkyl or H) were used as the model compounds. Special emphasis was laid on the potential contribution of the polar component in these steric substituent parameters. In the light of our model the Omega(S) scale seems to be dominantly a steric substituent constant scale as is seen on the strengths of the good correlation between the Omega(S) constants of the CR3 group and the total steric exchange energy values E-TSEE for the model compounds. However, the Omega(S) values also seem to include a minor electronic component due to the varying electrostatic effect via the C alpha atom. On the other hand, E-R and E-S' parameters largely hinge on the size dependent polar effect of the CR3 alkyl group. By way of our model this repulsive interaction can be quantified by descriptor Delta q(OCO), the natural charge difference q(C)(C=O) - Sigma qO for the O-C(=O) functional group. Delta q(OCO) depends on the E-TSEE values, on qC alpha and on the polarization coefficients of the oxygen hybrid in the NBO of the pi(C=O) bond. The size sensitivity of the kinetic E-S' constants can be connected to variation of the Burgi-Dunitz angle in the transition state for the standard reaction used. A comparison is made for the q(C)(C=O) or Delta q(OCO) values computed on the one hand with the NBO formalism and on the other hand with the Hirshfeld formalism. A practical novel substituent constant q(C)(C=O) for the size of the alkyl groups is introduced.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Kari Neuvonen, Helmi Neuvonen, Andreas KochORCiDGND, Erich KleinpeterORCiDGND
DOI:https://doi.org/10.1016/j.comptc.2013.03.025
ISSN:2210-271X
Title of parent work (English):Computational and theoretical chemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:NBO and STERIC analyses; Polar effect; Steric effect; Steric substituent constant; Taft equation
Volume:1015
Issue:4
Number of pages:10
First page:34
Last Page:43
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.